Skip to main content
Log in

High-performance solar-blind ultraviolet photodetector based on electrospun TiO2-ZnTiO3 heterojunction nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-performance solar-blind UV (ultraviolet) photodetectors (PDs) based on low-dimension semiconducting nanostructures with high sensitivity, excellent cycle stability, and the ability to operate in harsh environments are critical for solar observations, space communication, UV astronomy, and missile tracking. In this study, TiO2-ZnTiO3 heterojunction nanowire-based PDs are successfully developed and used to detect solar-blind UV light. A photoconductive analysis indicates that the fabricated PDs are sensitive to UV illumination, with high sensitivity, good stability, and high reproducibility. Further analysis indicates that the rich existence of grain boundaries within the TiO2-ZnTiO3 nanowire can greatly decrease the dark current and recombination of the electron-hole pairs and thereby significantly increase the device’s photosensitivity, spectra responsivity (1.1 × 106), and external quantum efficiency (4.3 × 108 %). Moreover, the PDs exhibit good photodetective performance with fast photoresponse and recovery and excellent thermal stability at temperatures as high as 175 °C. According to these results, TiO2-ZnTiO3 heterojunction nanowires exhibit great potential for applications in high-performance optical electronics and PDs, particularly next-generation photodetectors with the ability to operate in harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du, X. L.; Mei, Z. X.; Liu, Z. L.; Guo, Y.; Zhang, T. C.; Hou, Y. N.; Zhang, Z.; Xue, Q. K.; Kuznetsov, A. Y. Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors. Adv. Mater. 2009, 21, 4625–4630.

    Article  Google Scholar 

  2. Kong, X. Z.; Liu, C. X.; Dong, W.; Zhang, X. D.; Tao, C.; Shen, L.; Zhou, J. R.; Fei, Y. F.; Ruan, S. P. Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes. App. Phys. Lett. 2009, 94, 123502.

    Article  Google Scholar 

  3. Hou, Y. N.; Mei, Z. X.; Liu, Z. L.; Zhang, T. C.; Du, X. L. Mg0.55Zn0.45O solar-blind ultraviolet detector with high photoresponse performance and large internal gain. Appl. Phys. Lett. 2013, 98, 103506.

    Article  Google Scholar 

  4. Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X.; Chen, D.; Shen, G. Z. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775–783.

    Article  Google Scholar 

  5. Yu, Y. Q.; Luo, L. B.; Wang, M. Z.; Wang, B.; Zeng, L. H.; Wu, C. Y.; Jie, J. S.; Liu, J. W.; Wang, L.; Yu, S. H. Interfacial states induced ultrasensitive ultraviolet light photodetector with resolved flux down to 85 photons per second. Nano Res. 2014, 8, 1–10.

    Google Scholar 

  6. Mello, M.; Scarascia, A.; De Guido, S.; Altamura, D.; Tasco, V.; De Vittorio, M.; Passaseo, A. High responsivity AlGaN-based UV sensors for operation in harsh conditions. Sensors 2008 IEEE 2008, 1588–1591.

    Chapter  Google Scholar 

  7. Wei, T. C.; Tsai, D. S.; Ravadgar, P.; Ke, J. J.; Tsai, M.; Lien, D.; Huang, C.; Horng, R.; He, J. See-through Ga2O3 solar-blind photodetectors for use in harsh environments. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 3802006.

    Google Scholar 

  8. Pettersson, H.; Trägårdh, J.; Persson, A. I.; Landin, L.; Hessman, D.; Samuelson, L. Infrared photodetectors in heterostructure nanowires. Nano Lett. 2006, 6, 229–232.

    Article  Google Scholar 

  9. Liu, X.; Liu, X.; Wang, J.; Liao, C. L.; Xiao, X. H.; Guo, S. S.; Jiang, C. Z.; Fan, Z. Y.; Wang, T.; Chen, X. S.; Lu, W.; Hu, W. D.; Liao, L. Transparent, high-performance InGaZnO/aligned-SnO2 nanowires composite thin-film transistors and their application in thotodetectors. Adv. Mater. 2014, 26, 7399–7404.

    Article  Google Scholar 

  10. Zhang, F.; Ding, Y.; Zhang, Y.; Zhang, X. L.; Wang, Z. L. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire. ACS Nano 2012, 6, 9229–9236.

    Article  Google Scholar 

  11. Hadar, I.; Hitin, G. B.; Sitt, A.; Faust, A.; Banin, U. Polarization properties of semiconductor nanorod heterostructures: From single particles to the ensemble. J. Phys. Chem. Lett. 2013, 4, 502–507.

    Article  Google Scholar 

  12. Punke, M.; Valouch, S.; Kettlitz, S. W.; Christ, N.; Gärtner, C.; Gerken, M.; Lemmer, U. Dynamic characterization of organic bulk heterojunction photodetectors. Appl. Phys. Lett. 2007, 91, 071118.

    Article  Google Scholar 

  13. Sun, K.; Jing, Y.; Park, N.; Li, C.; Bando, Y.; Wang, D. L. Solution synthesis of large-scale, high-sensitivity ZnO/Si hierarchical nanoheterostructure photodetectors. J. Am. Chem. Soc. 2010, 132, 15465–15467.

    Article  Google Scholar 

  14. Manna, S.; Das, S.; Mondal, S. P.; Singha, R.; Ray, S. K. High efficiency Si/CdS radial nanowire heterojunction photodetectors using etched Si nanowire templates. J. Phys. Chem. Lett. C 2012, 116, 7126–7133.

    Article  Google Scholar 

  15. Wang, D. Y.; Jiang, Y. T.; Lin, C. C.; Li, S. S.; Wang, Y. T.; Chen, C. C.; Chen, C. W. Solution-processable pyrite FeS2 nanocrystals for the fabrication of heterojunction photodiodes with visible to NIR photodetection. Adv. Mater. 2012, 24, 3415–3420.

    Article  Google Scholar 

  16. An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916.

    Article  Google Scholar 

  17. Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorus-monolayer MoS2 van der waals heterojunction p-n diode. ACS Nano 2014, 8, 8292–8299.

    Article  Google Scholar 

  18. Hu, L. F.; Yan, J.; Liao, M. Y.; Xiang, H. J.; Gong, X. G.; Zhang, L. D.; Fang, X. S. An optimized ultraviolet-a light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial Nanobelt. Adv. Mater. 2012, 24, 2305–2309.

    Article  Google Scholar 

  19. Hu, L. F.; Brewster, M. M.; Xu, X. J.; Tang, C. C.; Gradečak, S.; Fang, X. S. Heteroepitaxial growth of GaP/ZnS nanocable with superior optoelectronic response. Nano Lett. 2013, 13, 1941–1947.

    Article  Google Scholar 

  20. Tian, W.; Zhai, T. Y.; Zhang, C.; Li, S. L.; Wang, X.; Liu, F.; Liu, D. Q.; Cai, X. K.; Tsukagoshi, K.; Golberg, D. Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO2 heterojunction nanofibers. Adv. Mater. 2013, 25, 4625–4630.

    Article  Google Scholar 

  21. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

    Article  Google Scholar 

  22. Jin, Y.; Wang, J.; Sun, B.; Blakesley, J. C.; Greenham, N. C. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett. 2008, 8, 1649–1653.

    Article  Google Scholar 

  23. Zou, J. P.; Zhang, Q.; Huang, K.; Marzari, N. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J. Phys. Chem. Lett. C 2010, 114, 10725–10729.

    Article  Google Scholar 

  24. Wang, Z. R.; Wang, H.; Liu, B.; Qiu, W. Z.; Zhang, J.; Ran, S. H.; Huang, H. T.; Xu, J.; Han, H. W.; Chen, D. et al. Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano 2011, 5, 8412–8419.

    Article  Google Scholar 

  25. Guo, F. W.; Yang, B.; Yuan, Y. B.; Xiao, Z. G.; Dong, Q. F.; Bi, Y.; Huang, J. S. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 2012, 7, 798–802.

    Article  Google Scholar 

  26. Liang, B.; Huang, H. T.; Liu, Z.; Chen, G.; Yu, G.; Luo, T.; Liao, L.; Chen, D.; Shen, G. Z. Ladder-like metal oxide nanowires: Synthesis, electrical transport, and enhanced light absorption properties. Nano Res. 2014, 7, 272–283.

    Article  Google Scholar 

  27. Panigrahi, S.; Basak, D. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection. Nanoscale 2011, 3, 2336–2341.

    Article  Google Scholar 

  28. Liang, Y. C.; Liao, W. K. Annealing induced solid-state structure dependent performance of ultraviolet photodetectors made from binary oxide-based nanocomposites. RSC Adv. 2014, 4, 19482–19487.

    Article  Google Scholar 

  29. Chen, D.; Zhang, H.; Hu, S.; Li, J. H. Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO-TiO2 nanocomposites. J. Phys. Chem. C 2008, 112, 117–122.

    Article  Google Scholar 

  30. Huang, K.; Zhang, Q.; Yang, F.; He, D. Y. Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Res. 2010, 3, 281–287.

    Article  Google Scholar 

  31. Liu, X.; Gu, L. L.; Zhang, Q. P.; Wu, J. Y.; Long, Y. Z.; Fan, Z. Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014, 5, 4007.

    Google Scholar 

  32. Ahn, S. E.; Ji, H. J.; Kim, K.; Kim, G. T.; Bae, C. H.; Park, S. M.; Kim, Y. K.; Ha, J. S. Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire. Appl. Phys. Lett. 2007, 90, 153106.

    Article  Google Scholar 

  33. Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.

    Article  Google Scholar 

  34. Fan, Z.; Wang, D.; Chang, P. C.; Tseng, W. Y.; Lu, J. G. ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 2004, 85, 5923–5925.

    Article  Google Scholar 

  35. Hossain, F. M.; Nishii, J.; Takagi, S.; Ohtomo, A.; Fukumura, T.; Fujioka, H.; Ohno, H.; Koinuma, H.; Kawasaki, M. Modeling and simulation of polycrystalline ZnO thin-film transistors. J. Appl. Phys. 2003, 94, 7768–7777.

    Article  Google Scholar 

  36. Hossain, F. M.; Nishii, J.; Takagi, S.; Sugihara, T.; Ohtomo, A.; Fukumura, T.; Koinuma, H.; Ohno, H.; Kawasaki, M. Modeling of grain boundary barrier modulation in ZnO invisible thin film transistors. Phys. E (Amsterdam, Neth.) 2004, 21, 911–915.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiyou Yang or Guozhen Shen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, H., Wei, G., Hou, H. et al. High-performance solar-blind ultraviolet photodetector based on electrospun TiO2-ZnTiO3 heterojunction nanowires. Nano Res. 8, 2822–2832 (2015). https://doi.org/10.1007/s12274-015-0787-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0787-x

Keywords

Navigation