Skip to main content
Log in

Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Novel three-dimensional (3D) concentration-gradient Ni-Co hydroxide nanostructures (3DCGNC) have been directly grown on nickel foam by a facile stepwise electrochemical deposition method and intensively investigated as binder- and conductor-free electrode for supercapacitors. Based on a three-electrode electrochemical characterization technique, the obtained 3DCGNC electrodes demonstrated a high specific capacitance of 1,760 F·g−1 and a remarkable rate capability whereby more than 62.5% capacitance was retained when the current density was raised from 1 to 100 A·g−1. More importantly, asymmetric supercapacitors were assembled by using the obtained 3DCGNC as the cathode and Ketjenblack as a conventional activated carbon anode. The fabricated asymmetric supercapacitors exhibited very promising electrochemical performances with an excellent combination of high energy density of 103.0 Wh·kg−1 at a power density of 3.0 kW·kg−1, and excellent rate capability—energy densities of about 70.4 and 26.0 Wh·kg−1 were achieved when the average power densities were increased to 26.2 and 133.4 kW·kg−1, respectively. Moreover, an extremely stable cycling life with only 2.7% capacitance loss after 20,000 cycles at a current density of 5 A·g−1 was achieved, which compares very well with the traditional doublelayer supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  2. Huang, J. S.; Sumpter, B. G.; Meunier, V. Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 2008, 47, 520–524.

    Article  Google Scholar 

  3. Chen, P. C.; Chen, H. T.; Qiu, J.; Zhou, C. W. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010, 3, 594–603.

    Article  Google Scholar 

  4. Fang, M.; Tan, X. L.; Liu, M.; Kang, S. H.; Hu, X. Y.; Zhang, L. D. Low-temperature synthesis of Mn3O4 hollow-tetrakaidecahedrons and their application in electrochemical capacitors. CrystEngComm 2011, 13, 4915–4920.

    Article  Google Scholar 

  5. Selvan, R. K.; Perelshtein, I.; Perkas, N.; Gedanken, A. Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@C nanocomposites for electrochemical redox supercapacitors. J. Phys. Chem. C 2008, 112, 1825–1830.

    Article  Google Scholar 

  6. Wee, G.; Soh, H. Z.; Cheah, Y. L.; Mhaisalkar, S. G.; Srinivasan, M. Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J. Mater. Chem. 2010, 20, 6720–6725.

    Article  Google Scholar 

  7. Cheng, H.; Lu, Z.G.; Deng, J.Q.; Chung, C.Y.; Zhang, K. L.; Li, Y. Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895–901.

    Article  Google Scholar 

  8. Lang, J. W.; Kong, L. B.; Wu, W. J.; Luo, Y. C.; Kang, L. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. 2008, 44, 4213–4215.

    Article  Google Scholar 

  9. Zhu, J. W.; Chen, S.; Zhou, H.; Wang, X. Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance. Nano Res. 2012, 5, 11–19.

    Article  Google Scholar 

  10. Du, H. M.; Jiao, L. F.; Wang, Q. H.; Yang, J. Q.; Guo, L. J.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors. Nano Res. 2013, 6, 87–98.

    Article  Google Scholar 

  11. Mondal, C.; Ganguly, M.; Manna, P. K.; Yusuf, S. M.; Pal, T. Fabrication of porous β-Co(OH)2 architecture at room temperature: A high performance supercapacitor. Langmuir 2013, 29, 9179–9187.

    Article  Google Scholar 

  12. Wang, H. L.; Holt, C. M. B.; Li, Z.; Tan, X. H.; Amirkhiz, B. S.; Xu, Z. W.; Olsen, B. C.; Stephenson, T.; Mitlin, D. Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 2012, 5, 605–617.

    Article  Google Scholar 

  13. Xu, Y. X.; Huang, X. Q; Lin, Z.Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76.

    Article  Google Scholar 

  14. Lu, Z. Y.; Chang, Z.; Liu, J. F.; Sun, X. M. Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res. 2011, 4, 658–665.

    Article  Google Scholar 

  15. Bao, L. H.; Li, X. D. Towards textile energy storage from cotton T-shirts. Adv. Mater. 2012, 24, 3246–3252.

    Article  Google Scholar 

  16. Huang, L.; Chen, D. C.; Ding, Y.; Feng, S.; Wang, Z. L.; Liu, M. L. Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139.

    Article  Google Scholar 

  17. Yu, Z.Y.; Chen, L. F.; Yu, S. H. Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J. Mater. Chem. A 2014, 2, 10889–10894.

    Article  Google Scholar 

  18. Wang, S. B.; Pu, J.; Tong, Y.; Cheng, Y. Y.; Gao, Y.; Wang, Z. H. ZnCo2O4 nanowire arrays grown on nickel foam for high-performance pseudocapacitors. J. Mater. Chem. A 2014, 2, 5434–5440.

    Article  Google Scholar 

  19. Yang, G. W.; Xu, C. L.; Li, H. L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 2008, 48, 6537–6539.

    Article  Google Scholar 

  20. Wang, Y. M.; Zhao, D. D.; Zhao, Y. Q.; Xu, C. L.; Li, H. L. Effect of electrodeposition temperature on the electrochemical performance of a Ni(OH)2 electrode. RSC Adv. 2012, 2, 1074–1082.

    Article  Google Scholar 

  21. Yang, G. W.; Xu, C. L.; Li, H. L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 2008, 44, 6537–6539.

    Article  Google Scholar 

  22. Wang, H. L.; Holt, C. M. B.; Li, Z.; Tan, X. H.; Amirkhiz, B. S.; Xu, Z. W.; Olsen, B. C.; Stephenson, T.; Mitlin, D. Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 2012, 5, 605–617.

    Article  Google Scholar 

  23. Li, J. X.; Yang, M.; Wei, J. P.; Zhou, Z. Preparation and electrochemical performances of doughnut-like Ni(OH)2-Co(OH)2 composites as pseudocapacitor materials. Nanoscale 2012, 4, 4498–4503.

    Article  Google Scholar 

  24. Lu, Z. Y.; Yang, Q.; Zhu, W.; Chang, Z.; Liu, J. F.; Sun, X. M.; Evans, D.; Duan, X. Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res. 2012, 5, 369–378.

    Article  Google Scholar 

  25. Gupta, V.; Gupta, S.; Miura, N. Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors. J. Power Sources 2008, 175, 680–685.

    Article  Google Scholar 

  26. Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.

    Article  Google Scholar 

  27. Yu, G. H.; Hu, L. B.; Liu, N. A.; Wang, H. L.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z. N. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 2011, 11, 4438–4442.

    Article  Google Scholar 

  28. Pan, G. X.; Xia, X.; Cao, F.; Tang, P. S.; Chen, H. F. Porous Co(OH)2/Ni composite nanoflake array for high performance supercapacitors. Electrochim. Acta 2012, 63, 335–340.

    Article  Google Scholar 

  29. Lee, J. W.; Ahn, T.; Soundararajan, D.; Ko, J. M.; Kim, J. D. Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem. Commun. 2011, 47, 6305–6307.

    Article  Google Scholar 

  30. Ma, R.; Liang, J.; Takada, K.; Sasaki, T. Topochemical synthesis of Co-Fe layered double hydroxides at varied Fe/Co ratios: Unique intercalation of triiodide and its profound effect. J. Am.Chem. Soc. 2010, 133, 613–620.

    Article  Google Scholar 

  31. Liang, J. B.; Ma, R. Z.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Topochemical synthesis, anion exchange, and exfoliation of Co-Ni layered doublehydroxides: A route to positively charged Co-Ni hydroxide nanosheets with tunable composition. Chem. Mater. 2009, 22, 371–378.

    Article  Google Scholar 

  32. Wang, X.; Sumboja, A.; Lin, M. F.; Yan, J.; Lee, P. S. Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: A hybrid material for an asymmetric supercapacitor device. Nanoscale 2012, 4, 7266–7272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouguang Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Cheng, H., Gu, Y. et al. Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors. Nano Res. 8, 2744–2754 (2015). https://doi.org/10.1007/s12274-015-0781-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0781-3

Keywords

Navigation