Skip to main content
Log in

Ultraviolet mem-sensors: flexible anisotropic composites featuring giant photocurrent enhancement

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

By using two separate components, mem-sensing devices can be fabricated combining the sensitivity of a transducer with non-volatile memory. Here, we discuss how a mem-sensor can be fabricated using a single material with built-in sensing andmemory capabilities, based on ZnO microwires (MWs) embedded in a photocurable resin and processed from liquid by vertically aligning the MWs across the polymeric matrix using dielectrophoresis. This results in an ultraviolet (UV) photodetector, a device that is widely applied in fields such as telecommunication, health, and defense, and has so far implemented using bulk inorganic semiconductors. However, inorganic detectors suffer from very high production costs, brittleness, huge equipment requirements, and low responsivity. Here, we propose for the first time aneasy processable, reproducible, and low-cost hybrid UV mem-sensor. Composites with aligned ZnO MWs produce giant photocurrentscompared to the same composites with randomly distributed MWs. In particular, we efficiently exploit a mem-response where the photocurrent carries memory of the last electronic state experienced by the device when under testing. Furthermore, we demonstrate the non-equivalence of different wave profiles used during thedielectrophoresis: a pulsed wave is able to induce order in both the axis and the orientation of the MWs, whereas a sine wave only affects the orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. -E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13, 4395–4398.

    Article  Google Scholar 

  2. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. -J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.

    Article  Google Scholar 

  3. Tian, Z. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. F. Complex and oriented ZnO nanostructures. Nat. Mater. 2003, 2, 821–826.

    Article  Google Scholar 

  4. Wilson, S. A.; Jourdain, R. P. J.; Zhang, Q.; Dorey, R. A.; Bowen, C. R.; Willander, M.; UlWahab, Q.; Al-hilli, S. M.; Nur, O. et al. New materials for micro-scale sensors and actuators: An engineering review. Mat. Sci. Eng.: R: Reports 2007, 56, 1–129.

    Article  Google Scholar 

  5. Bahnemann, D. W.; Kormann, C.; Hoffmann, M. R. Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study. J. Phys. Chem. 1987, 91, 3789–3798.

    Article  Google Scholar 

  6. Gomez, J. L.; Tigli, O. Zinc oxide nanostructures: From growth to application. J. Mater. Sci. 2013, 48, 612–624.

    Article  Google Scholar 

  7. Xu, S.; Wang, Z. L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013–1098.

    Article  Google Scholar 

  8. Cauda, V.; Gazia, R.; Porro, S.; Stassi, S.; Canavese, G.; Roppolo, I.; Chiolerio, A. Nanostructured ZnO materials: Synthesis, properties and applications.In Handbook of Nanomaterial Properties. Bhushan, B.; Luo, D.; Schricker, S. R.; Sigmund, W.; Zauscher, S., Eds.; Springer: Berlin, 2014; pp 137–177.

    Chapter  Google Scholar 

  9. Ottone, C.; Stassi, S.; Motto, P.; Laurenti, M.; Demarchi, D.; Cauda, V. ZnO nanowires: Synthesis approaches and electrical properties. In Nanowires: Synthesis, Electrical Properties and Uses in Biological Systems. Wilson, L. J., Eds.; Nova Science Publishers: New York, 2014; pp 1–58.

    Google Scholar 

  10. Espinosa, H. D.; Bernal, R. A.; Minary-Jolandan, M. A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv. Mater. 2012, 24, 4656–4675.

    Article  Google Scholar 

  11. Hernández, S.; Cauda, V.; Chiodoni, A.; Dallorto, S.; Sacco, A.; Hidalgo, D.; Celasco, E.; Pirri, C. F. Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination. ACS Appl. Mater. Interfaces 2014, 6, 12153–12167.

    Article  Google Scholar 

  12. Zhang, Y.; Yan, X.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotroniceffect in ZnOnanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

    Article  Google Scholar 

  13. Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.

    Article  Google Scholar 

  14. Xu, S. G.; Guo, W. H.; Du, S. W.; Loy, M. M. T.; Wang, N. Piezotroniceffects on the optical properties of ZnO nanowires. Nano Lett. 2012, 12, 5802–5807.

    Article  Google Scholar 

  15. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

    Article  Google Scholar 

  16. He, Y. N.; Zhang, W.; Zhang, S. C.; Kang, X.; Peng, W. B.; Xu, Y. L. Study of the photoconductive ZnO UV detector based on the electrically floated nanowire array. Sens. Actuators, A 2012, 181, 6–12.

    Article  Google Scholar 

  17. Jin, Y. Z.; Wang, J. P.; Sun, B. Q.; Blakesley, J. C.; Greenham, N. C. Solution-processed ultraviolet photodetectorsbased on colloidal ZnO nanoparticles. Nano Lett. 2008, 8, 1649–1653.

    Article  Google Scholar 

  18. Lao, C. S.; Park, M. -C.; Kuang, Q.; Deng, Y. L.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization. J. Am. Chem. Soc. 2007, 129, 12096–12097.

    Article  Google Scholar 

  19. Guo, F. W.; Yang, B.; Yuan, Y. B.; Xiao, Z. G.; Dong, Q. F.; Bi, Y.; Huang, J. S. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 2012, 7, 798–802.

    Article  Google Scholar 

  20. Wang, D. Q.; Zhu, R.; Zhou, Z. Y.; Ye, X. Y. Controlled assembly of zinc oxide nanowires using dielectrophoresis. Appl. Phys. Lett. 2007, 90, 103110.

    Article  Google Scholar 

  21. Kwok, H. L. Modeling negative capacitance effect in organic polymers. Solid-State Electron. 2003, 47, 1089–1093.

    Article  Google Scholar 

  22. Bocchini, S.; Chiolerio, A.; Porro, S.; Accardo, D.; Garino, N.; Bejtka, K.; Perrone, D.; Pirri, C. F. Synthesis of polyaniline-based inks, doping thereof and test device printing towards electronic applications. J. Mater. Chem. C 2013, 1, 5101–5109.

    Article  Google Scholar 

  23. Chiolerio, A.; Bocchini, S.; Porro, S. Inkjet printed negative supercapacitors: Synthesis of polyaniline-based inks, doping agent effect, and advanced electronic devices applications. Adv. Funct. Mater. 2014, 24, 3375–3383.

    Article  Google Scholar 

  24. Son, D. I.; You, C. H.; Kim, W. T.; Jung, J. H.; Kim, T. W. Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites. Appl. Phys. Lett. 2009, 94, 132103.

    Article  Google Scholar 

  25. Son, D. I.; You, C. H.; Jung, J. H.; Kim, T. W. Carrier transport mechanisms of organic bistable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites. Appl. Phys. Lett. 2010, 97, 013304.

  26. Sah, M. P.; Hyongsuk, K.; Chua, L. O. Brains are made of memristors. IEEE Circuits and Systems Magazine 2014, 14, 12–36.

    Article  Google Scholar 

  27. Fan, Z.; Fan, X. D.; Li, A.; Dong, L. X. Nanorobotic in situ characterization of nanowires memristors and “memsensing”. In IEEE/RSJ International Conference on Intelligent Robots and Systems (BS2013), Tokyo, Japan, 2013, pp 1028–1033.

    Google Scholar 

  28. Wang, X. B.; Chen, Y. R.; Gu, Y.; Li, H. Spintronicmemristortemperature sensor. IEEE Electron Device Lett. 2010, 31, 20–22.

    Article  Google Scholar 

  29. Yang, Y.; Guo, W.; Pradel, K. C.; Zhu, G.; Zhou, Y.; Zhang, Y.; Hu, Y.; Lin, L.; Wang, Z. L. Pyroelectricnanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chiolerio.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiolerio, A., Roppolo, I., Cauda, V. et al. Ultraviolet mem-sensors: flexible anisotropic composites featuring giant photocurrent enhancement. Nano Res. 8, 1956–1963 (2015). https://doi.org/10.1007/s12274-014-0705-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0705-2

Keywords

Navigation