Skip to main content
Log in

Zinc oxide nanostructures: from growth to application

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zinc oxide’s (ZnO) physical and chemical properties make it a viable and extremely attractive compound to use in a variety of nanotechnology applications. Some of these applications include biomedical, energy, sensors, and optics. As the research in ZnO nanostructures continue to grow, it has inspired a whole host of new innovative applications. Complementing its unique chemical qualities, it also has a simple crystal-growth technology and offers significantly lower fabrication costs when compared to other semiconductors used in nanotechnology. Several processes have been developed in order to synthesize high quality ZnO nanostructures—specifically in the case of nanowires. Here we offer a comprehensive review on the growth methods currently employed in research, industry, and academia to understand what protocols are available to meet specific needs in nanotechnology. Methods examined include: the vapor–liquid–solid, physical vapor deposition, chemical vapor deposition, metal–organic chemical vapor deposition, and the hydrothermal-based chemical approach. Each of these methods is discussed and their strengths and weaknesses are analyzed with objective comparison metrics. In addition, we study the current state-of-the-art applications employing ZnO nanostructures at their core. A historical perspective on the evolution of the field and the accompanying literature are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brubaker DG, Fuller ML (1945) J Appl Phys 16:128

    Article  CAS  Google Scholar 

  2. Klingshirn C, Hauschild R, Priller H, Zeller J, Decker M, Kalt H (2006) Adv Spectrosc Lasers Sens 231:277

    Article  CAS  Google Scholar 

  3. Leung V, Ko F (2011) Polym Adv Technol 22:350

    Article  CAS  Google Scholar 

  4. Nambiar S, Yeow JTW (2011) Biosens Bioelectron 26:1825

    Article  CAS  Google Scholar 

  5. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Modern Phys 81:109

    Article  CAS  Google Scholar 

  6. Chen XM, Wu GH, Jiang YQ, Wang YR, Chen X (2011) Analyst 136:4631

    Article  CAS  Google Scholar 

  7. Artiles MS, Rout CS, Fisher TS (2011) Adv Drug Deliv Rev 63:1352

    Article  CAS  Google Scholar 

  8. Geim AK (2011) Rev Mod Phys 83:851

    Article  CAS  Google Scholar 

  9. Cao BQ, Teng XM, Heo SH, Li Y, Cho SO, Li GH, Cai WP (2007) J Phys Chem C 111:2470

    Article  CAS  Google Scholar 

  10. Fryar J, McGlynn E, Henry MO, Cafolla AA, Hanson CJ (2004) Nanotechnology 15:1797

    Article  CAS  Google Scholar 

  11. Shen GZ, Chen D, Lee CJ (2006) J Phys Chem B 110:15689

    Article  CAS  Google Scholar 

  12. Calestani D, Zha MZ, Zanotti L, Villani M, Zappettini A (2011) CrystEngComm 13:1707

    Article  CAS  Google Scholar 

  13. Hsu YK, Lin YG, Chen YC (2011) Electrochem Commun 13:1383

    Article  CAS  Google Scholar 

  14. Zhang P, Xu F, Navrotsky A, Lee JS, Kim ST, Liu J (2007) Chem Mater 19:5687

    Article  CAS  Google Scholar 

  15. Liu WC, Cai W (2008) J Cryst Growth 310:843

    Article  CAS  Google Scholar 

  16. Jimenez-Cadena G, Comini E, Ferroni M, Vomiero A, Sberveglieri G (2010) Mater Chem Phys 124:694

    Article  CAS  Google Scholar 

  17. Wang J, Zhuang HZ, Li JL, Xu P (2011) Appl Surf Sci 257:2097

    Article  CAS  Google Scholar 

  18. Ahmad M, Zhu J (2011) J Mater Chem 21:599

    Article  CAS  Google Scholar 

  19. Wang ZL, Gao PX (2004) J Phys Chem B 108:7534

    Article  Google Scholar 

  20. Gomez JL, Tigli O (2011) In: IEEE NMDC, Jeju

  21. Carcia PF, McLean RS, Reilly MH, Crawford MK, Blanchard EN, Kattamis AZ, Wagner S (2007) J Appl Phys 102: 074512

    Google Scholar 

  22. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) J Appl Phys 98: 041301

    Google Scholar 

  23. Klingshirn C, Fallert J, Zhou H, Sartor J, Thiele C, Maier-Flaig F, Schneider D, Kalt H (2010) Phys Status Solid B-Basic Solid State Phys 247:1424

    Article  CAS  Google Scholar 

  24. Hsueh TJ, Hsu CL, Chang SJ, Lin YR, Lin TS, Chen IC (2007) J Electrochem Soc 154:H153

    Article  CAS  Google Scholar 

  25. Hahn YB (2011) Korean J Chem Eng 28:1797

    Article  CAS  Google Scholar 

  26. Wagner RS, Ellis WC (1964) Appl Phys Lett 4:89

    Article  CAS  Google Scholar 

  27. Tigli O, Juhala J (2011) In: IEEE Nanotechnology, Portland

  28. Hsu HC, Cheng CS, Chang CC, Yang S, Chang CS, Hsieh WF (2005) Nanotechnology 16:297

    Article  CAS  Google Scholar 

  29. Snyder RL, Kirkham M, Wang XD, Wang ZL (2007) Nanotechnology 18: 365304

    Google Scholar 

  30. Chen IC, Hsueh TJ, Hsu CL, Chang SJ (2007) Sensors Actuators B-Chem 126:473

    Article  Google Scholar 

  31. Yang PD, Huang MH, Wu YY, Feick H, Tran N, Weber E (2001) Adv Mater 13:113

    Article  Google Scholar 

  32. Lu JG, Chang PC, Fan ZY, Wang DW, Tseng WY, Chiou WA, Hong J (2004) Chem Mater 16:5133

    Article  Google Scholar 

  33. Wang N, Cai Y, Zhang RQ (2008) Mater Sci Eng R-Rep 60:1

    Article  CAS  Google Scholar 

  34. Sallet V, Agouram S, Falyouni F, Marzouki A, Haneche N, Sartel C, Lusson A, Enouz-Vedrenne S, Munoz-Sanjose V, Galtier P (2010) Phys Status Solidi B-Basic Solid State Phys 247:1683

    Article  CAS  Google Scholar 

  35. Hornyak GL (2009) Fundamentals of nanotechnology. CRC Press, Boca Raton

    Google Scholar 

  36. Yu DP, Zhang Y, Jia HB, Wang RM, Chen CP, Luo XH, Lee CJ (2003) Appl Phys Lett 83:4631

    Article  Google Scholar 

  37. Zhang X, Wang LS, Zhou GY (2005) Rev Adv Mater Sci 10:69

    CAS  Google Scholar 

  38. Zhang XZ, Wang LS, Zhao SQ, Zhou GY, Zhou YL, Qi JJ (2005) Appl Phys Lett 86:231903

    Article  Google Scholar 

  39. Zhao DX, Fang F, Zhang JY, Shen DZ, Lu YM, Fan XW, Li BH, Wang XH (2008) Mater Lett 62:1092

    Article  Google Scholar 

  40. Zhang J, Wang X, Li QQ, Liu ZB, Liu ZF, Wang RM (2004) Appl Phys Lett 84:4941

    Article  Google Scholar 

  41. Gomez JL, Senveli SU, Tigli O (2012) In: Miami 2012 winter symposium: nanotechnology in biomedicine, Miami, p P18

  42. Kumar MS, Kim TY, Kim JY, Suh EK, Nahm KS (2004) In: Proceedings of 5th international symposium on blue laser and light emitting diodes, p 2554

  43. Park JH, Bae SY, Seo HW (2004) J Phys Chem B 108:5206

    Article  Google Scholar 

  44. Myoung JM, Lee W, Jeong MC (2004) Acta Mater 52:3949

    Article  Google Scholar 

  45. Lee WN, Jeong MC, Myoung JM (2004) Nanotechnology 15:254

    Article  CAS  Google Scholar 

  46. Wang ZL, Wang XD, Song JH, Li P, Ryou JH, Dupuis RD, Summers CJ (2005) J Am Chem Soc 127:7920

    Article  CAS  Google Scholar 

  47. Yang PD, Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G (2005) Nano Lett 5:1231

    Article  Google Scholar 

  48. Yan CH, Zhang J, Sun LD, Pan HY, Liao CS (2002) New J Chem 26:33

    Article  Google Scholar 

  49. Bai SN, Tsai HH, Tseng TY (2007) Thin Solid Films 516:155

    Article  CAS  Google Scholar 

  50. Gleiter H (2000) Acta Mater 48:1

    Article  CAS  Google Scholar 

  51. Pokropivny VV, Skorokhod VV (2007) Mater Sci Eng C-Biomimetic Supramol Syst 27:990

    Article  CAS  Google Scholar 

  52. Kustov E, Nefedov V (2008) Russ J Inorg Chem 53:2103

    Article  Google Scholar 

  53. Kustov EF, Nefedov VI (2007) Dokl Phys Chem 414:150

    Article  CAS  Google Scholar 

  54. Fan ZY, Lu JG (2005) J Nanosci Nanotechnol 5:1561

    Article  CAS  Google Scholar 

  55. Tian Y, Lu HB, Wu Y, Li JC (2010) Mater Sci Technol 26:1248

    Article  CAS  Google Scholar 

  56. Sears GW (1955) Acta Metall 3:367

    Article  CAS  Google Scholar 

  57. Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947

    Article  CAS  Google Scholar 

  58. Yang PD, Lieber CM (1997) J Mater Res 12:2981

    Article  CAS  Google Scholar 

  59. Wang ZL (2007) Appl Phys A-Mater Sci Proc 88:7

    Article  CAS  Google Scholar 

  60. Djurisic AB, Ng AMC, Chen XY (2010) Prog Quantum Electron 34:191

    Article  CAS  Google Scholar 

  61. Gao PX, Wang ZL (2004) Appl Phys Lett 84:2883

    Article  CAS  Google Scholar 

  62. Gao PX, Wang ZL (2003) J Am Chem Soc 125:11299

    Article  CAS  Google Scholar 

  63. Wang JX, Sun XW, Wei A, Lei Y, Cai XP, Li CM, Dong ZL (2006) Appl Phys Lett 88: 233106

  64. Umar A, Rahman MM, Al-Hajry A, Hahn YB (2009) Talanta 78:284

    Article  CAS  Google Scholar 

  65. Xiong HM, Liu DP, Xia YY, Chen JS (2005) Chem Mater 17:3062

    Article  CAS  Google Scholar 

  66. Xiong HM, Wang ZD, Xia YY (2006) Adv Mater 18:748+

    Article  CAS  Google Scholar 

  67. Xiong HM, Xu Y, Ren OG, Xia YY (2008) J Am Chem Soc 130:7522+

    Article  CAS  Google Scholar 

  68. Wang XD, Summers CJ, Wang ZL (2004) Nano Lett 4:423

    Article  CAS  Google Scholar 

  69. Hosono H (2004) Int J Appl Ceram Technol 1:106

    Article  CAS  Google Scholar 

  70. Hosono H (2004) In: Critical interfacial issues in thin-film optoelectronic and energy conversion devices, vol. 796. MRS proceedings, p. 87

  71. Kim KK, Lee SD, Kim H, Park JC, Lee SN, Park Y, Park SJ, Kim SW (2009) Appl Phys Lett 94:071118

    Article  Google Scholar 

  72. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Science 292:1897

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Departments of Electrical & Computer Engineering and Pathology as well as the Dr. John T. Mcdonald Biomedical Nanotechnology Institute, Miller School of Medicine, at the University of Miami. We would also like to thank our fellow colleagues for sharing their advice and knowledge—in particular, Sukru Ufuk Senveli from the University of Miami in Coral Gables, Florida, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge L. Gomez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez, J.L., Tigli, O. Zinc oxide nanostructures: from growth to application. J Mater Sci 48, 612–624 (2013). https://doi.org/10.1007/s10853-012-6938-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6938-5

Keywords

Navigation