Skip to main content
Log in

Highly sensitive detection of mercury(II) ions with few-layer molybdenum disulfide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) layered transition metal dichalcogenide (TMD) materials (e.g., MoS2) have attracted considerable interest due to their atomically thin geometry and semiconducting electronic properties. With ultrahigh surface to volume ratio, the electronic properties of these atomically thin semiconductors can be readily modulated by their environment. Here we report an investigation of the effects of mercury(II) (Hg2+) ions on the electrical transport properties of few-layer molybdenum disulfide (MoS2). The interaction between Hg2+ions and few-layer MoS2 was studied by field-effect transistor measurements and photoluminescence. Due to a high binding affinity between Hg2+ ions and the sulfur sites on the surface of MoS2 layers, Hg2+ ions can strongly bind to MoS2. We show that the binding of Hg2+ can produce a p-type doping effect to reduce the electron concentration in n-type few-layer MoS2. It can thus effectively modulate the electron transport and photoluminescence properties in few-layer MoS2. By monitoring the conductance change of few-layer MoS2 in varying concentration Hg2+ solutions, we further show that few-layer MoS2 transistors can function as highly sensitive sensors for rapid electrical detection of Hg2+ ion with a detection limit of 30 pM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  2. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  3. Li, H.; Wu, H.; Yin, Z.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075.

    Article  Google Scholar 

  4. Huang, X.; Zeng, Z.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

    Article  Google Scholar 

  5. Shaw, J. C.; Zhou, H.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang Y.; Duan, X. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517.

    Article  Google Scholar 

  6. Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang Y.; Duan, X. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952–958.

    Article  Google Scholar 

  7. Yin, Z.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6, 74–80.

    Article  Google Scholar 

  8. Liu, J. Q.; Zeng, Z. Y.; Cao, X. H.; Lu, G.; Wang, L. H.; Fan, Q. L.; Huang, W.; Zhang, H. Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 2012, 8, 3517–3522.

    Article  Google Scholar 

  9. Ji, Q.; Zhang, Y.; Gao, T.; Zhang, Y.; Ma, D.; Liu, M.; Chen, Y.; Qiao, X.; Tan, P.; Kan, M.; Feng, J.; Sun, Q.; Liu, Z. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013, 13, 3870–3877.

    Article  Google Scholar 

  10. Yin, X.; Ye, Z.; Chenet, D. A.; Ye, Y.; O’Brien, K.; Hone, J. C.; Zhang, X. Edge nonlinear optics on a MoS2 atomic monolayer. Science 2014, 344, 488–490.

    Article  Google Scholar 

  11. Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43–48.

    Article  Google Scholar 

  12. Duan, X.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H.; Wu, X.; Tang, Y.; Zhang, Q.; Pan, A.; et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. online 2014 doi:10.1038/nnano.2014.222.

    Google Scholar 

  13. Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang Y.; Duan X. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials Nat. Nanotechnol. 2013, 8, 952–958.

    Article  Google Scholar 

  14. Yu, W. J.; Li, Z.; Zhou, H.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 2013, 12, 246–252.

    Article  Google Scholar 

  15. Li, H.; Duan, X.; Wu, X.; Zhuang, X.; Zhou, H.; Zhang, Q.; Zhu, X.; Hu, W.; Ren, P.; Guo, P.; et al. Growth of alloy MoS2x Se2(1−x) nanosheets with fully tunable chemical compositions and optical properties J. Am. Chem. Soc. 2014, 136, 3756–3759.

    Article  Google Scholar 

  16. Halim, U.; Zheng, C. R.; Chen, Y.; Lin, Z.; Jiang, S.; Cheng, R.; Huang, Y.; Duan, X. A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction. Nat. Commun. 2013, 4, 2213.

    Article  Google Scholar 

  17. Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991–1995.

    Article  Google Scholar 

  18. He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999.

    Article  Google Scholar 

  19. Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J.; Yan, A.; Charles, D.; Waghmare, U. V.; Dravid, V. P.; et al. Sensing behavior of atomically thin-layered MoS2 transistors. Acs Nano 2013, 7, 4879–4891.

    Article  Google Scholar 

  20. Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with mono layer MoS2. Nano Lett. 2013, 13, 668–673.

    Article  Google Scholar 

  21. Lee, K.; Gatensby, R.; McEvoy, N.; Hallam, T.; Duesberg, G. S. High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 2013, 25, 6699–6702.

    Article  Google Scholar 

  22. Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. L. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63–67.

    Article  Google Scholar 

  23. Clevenger, W. L.; Smith, B. W.; Winefordner, J. D. Trace determination of mercury: A review. Crit. Rev. Anal. Chem. 1997, 27, l–26.

    Article  Google Scholar 

  24. Leopold, K.; Foulkes, M.; Worsfold, P. Methods for the determination and speciation of mercury in natural waters—A review. Anal. Chim. Acta. 2010, 663, 127–138.

    Article  Google Scholar 

  25. Chen, K; Lu, G.; Chang, J.; Mao, S.; Yu, K.; Cui, S.; Chen, J. Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles. Anal. Chem. 2012, 84, 4057–4062.

    Article  Google Scholar 

  26. Yang, Y. K.; Yook, K. J.; Tae, J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J. Am. Chem. Soc. 2005, 127, 16760–16761.

    Article  Google Scholar 

  27. Lee, J. S.; Han, M. S.; Mirkin, C. A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 2007, 119, 4171–4174.

    Article  Google Scholar 

  28. Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R. pH-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv. Funct. Mater. 2011, 21, 3508–3515.

    Article  Google Scholar 

  29. Darbha, G. K.; Ray, A.; Ray, P. C. Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. Acs Nano 2007, 1, 208–214.

    Article  Google Scholar 

  30. Cho, E. S.; Kim, J.; Tejerina, B.; Hermans, T. M.; Jiang, H.; Nakanishi, H.; Yu, M.; Patashinski, A. Z.; Glotzer, S. C.; Stellacci, F. Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. Nat. Mater. 2012, 11, 978–985.

    Article  Google Scholar 

  31. Knopfmacher, O.; Hammock, M. L.; Appleton, A. L.; Schwartz, G.; Mei, J. G.; Lei, T.; Pei, J.; Bao, Z. N. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 2014, 5, 2954.

    Article  Google Scholar 

  32. Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Huang, Y.; Duan, X. Benchmarking few-layer MoS2 transistors and circuits for high-speed flexible electronics. Nat. Commun. 2014, 5: 5143.

    Article  Google Scholar 

  33. Cheng, R.; Li, D.; Zhou, H.; Wang, C.; Yin, A.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction pn diodes [online]. Nano Lett. 2014, DOI: 10.1021/nl502075n. http://arxiv.org/abs/1403.3447 (accessed on November 24, 2014).

    Google Scholar 

  34. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  Google Scholar 

  35. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

    Article  Google Scholar 

  36. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    Article  Google Scholar 

  37. Sercombe, D.; Schwarz, S.; Del Pozo-Zamudio, O.; Liu, F.; Robinson, B. J.; Chekhovich, E. A.; Tartakovskii, I. I.; Kolosov O.; Tartakovskii. A. I. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 2013, 3, 3489.

    Article  Google Scholar 

  38. Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J.; Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 2011, 99, 102109.

    Article  Google Scholar 

  39. Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfeng Duan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Cheng, R., Ng, R. et al. Highly sensitive detection of mercury(II) ions with few-layer molybdenum disulfide. Nano Res. 8, 257–262 (2015). https://doi.org/10.1007/s12274-014-0658-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0658-x

Keywords

Navigation