Skip to main content
Log in

Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cobalt oxides, such as Co3O4 and CoO, have received increasing attention as potential anode materials for rechargeable lithium-ion batteries (LIBs) owing to their high theoretical capacity. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials for LIBs. In this review, we summarize recent developments in the rational design and fabrication of various cobalt oxide-based nanomaterials and their lithium storage performance, including 1D nanowires/belts, 2D nanosheets, 3D hollow/hierarchical structures, hybrid nanostructures with carbon (amorphous carbon, carbon nanotubes and graphene) and mixed metal oxides. By focusing on the effects of their structure on their electrochemical performance, effective strategies for the fabrication of cobalt oxide/carbon hybrid nanostructures are highlighted. This review shows that by rational design, such cobalt-oxide-based nanomaterials are very promising as next generation LIB anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, K. S.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

    Article  Google Scholar 

  2. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  3. Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.

    Article  Google Scholar 

  4. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.

    Article  Google Scholar 

  5. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Edit. 2008, 47, 2930–2946.

    Article  Google Scholar 

  6. Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Research on advanced materials for Li-ion batteries. Adv. Mater. 2009, 21, 4593–4607.

    Article  Google Scholar 

  7. Kim, M. G.; Cho, J. Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv. Funct. Mater. 2009, 19, 1497–1514.

    Article  Google Scholar 

  8. Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.; Liu, H. K. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Edit. 2007, 46, 750–753.

    Article  Google Scholar 

  9. Taberna, L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567–573.

    Article  Google Scholar 

  10. Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

    Article  Google Scholar 

  11. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

    Article  Google Scholar 

  12. Zhang, L.; Wu, H. B.; Lou, X. W. Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300958.

    Google Scholar 

  13. Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

    Article  Google Scholar 

  14. Zhu, J.; Sharma, Y. K.; Zeng, Z.; Zhang, X.; Srinivasan, M.; Mhaisalkar, S.; Zhang, H.; Hng, H. H.; Yan, Q. Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J. Phys. Chem. C 2011, 115, 8400–8406.

    Article  Google Scholar 

  15. Reddy, M. V.; Prithvi, G.; Loh, K. P.; Chowdari, B. V. R. Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 680–690.

    Article  Google Scholar 

  16. Armstrong, M. J.; O’Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.

    Article  Google Scholar 

  17. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  Google Scholar 

  18. Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

    Article  Google Scholar 

  19. Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

    Article  Google Scholar 

  20. Chen, J. S.; Lou, X. W. SnO2 and TiO2 nanosheets for lithium-ion batteries. Mater. Today 2012, 15, 246–254.

    Article  Google Scholar 

  21. Wang, Y.; Zhang, H. J.; Wei, J.; Wong, C. C.; Lin, J. Y.; Borgna, A. Crystal-match guided formation of single-crystal tricobalt tetraoxygen nanomesh as superior anode for electrochemical energy storage. Energy Environ. Sci. 2011, 4, 1845–1854.

    Article  Google Scholar 

  22. Ge, D.; Geng, H.; Wang, J.; Zheng, J.; Pan, Y.; Cao, X.; Gu, H. Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries. Nanoscale 2014, 6, 9689–9694.

    Article  Google Scholar 

  23. Shaju, K. M.; Jiao, F.; Debart, A.; Bruce, P. G. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 2007, 9, 1837–1842.

    Article  Google Scholar 

  24. Li, C. C.; Yin, X. M.; Chen, L. B.; Li, Q. H.; Wang, T. H. Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties. Chem. Eur. J. 2010, 16, 5215–5221.

    Article  Google Scholar 

  25. Hao, W.; Chen, S.; Cai, Y.; Zhang, L.; Li, Z.; Zhang, S. Three-dimensional hierarchical pompon-like Co3O4 porous spheres for high-performance lithium-ion batteries. J. Mater. Chem. A 2014, 2, 13801–13804.

    Article  Google Scholar 

  26. Tian, L.; Zou, H. L.; Fu, J. X.; Yang, X. F.; Wang, Y.; Guo, H. L.; Fu, X. H.; Liang, C. L.; Wu, M. M.; Shen, P. K.; Gao, Q. M. Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance. Adv. Funct. Mater. 2010, 20, 617–623.

    Article  Google Scholar 

  27. Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 2008, 18, 4397–4401.

    Article  Google Scholar 

  28. Wang, Y.; Xia, H.; Lu, L.; Lin, J. Y. Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)·0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 2010, 4, 1425–1432.

    Article  Google Scholar 

  29. Jiang, J.; Liu, J. P.; Ding, R. M.; Ji, X. X.; Hu, Y. Y.; Li, X.; Hu, A. Z.; Wu, F.; Zhu, Z. H.; Huang, X. T. Direct Synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes. J. Phys. Chem. C 2010, 114, 929–932.

    Article  Google Scholar 

  30. Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries. Chem. Eur. J. 2009, 15, 6169–6174.

    Article  Google Scholar 

  31. Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery. J. Power Sources 2008, 182, 359–364.

    Article  Google Scholar 

  32. Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y. T.; Cao, X. Q.; Ma, Y.; Yao, J. N. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680–1686.

    Article  Google Scholar 

  33. Du, N.; Zhang, H.; Chen, B.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D.; Huang, X. H.; Tu, J. P. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505–4509.

    Article  Google Scholar 

  34. Shim, H. W.; Jin, Y. H.; Seo, S. D.; Lee, S. H.; Kim, D. W. Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures. ACS Nano 2011, 5, 443–449.

    Article  Google Scholar 

  35. Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.

    Article  Google Scholar 

  36. Wang, X.; Yu, L. J.; Wu, X. L.; Yuan, F. L.; Guo, Y. G.; Ma, Y.; Yao, J. N. Synthesis of single-crystalline Co3O4 octahedral cages with tunable surface aperture and their lithium storage properties. J. Phys. Chem. C 2009, 113, 15553–15558.

    Article  Google Scholar 

  37. Guan, H.; Wang, X.; Li, H. Q.; Zhi, C. Y.; Zhai, T. Y.; Bando, Y.; Golberg, D. CoO octahedral nanocages for high-performance lithium ion batteries. Chem. Commun. 2012, 48, 4878–4880.

    Article  Google Scholar 

  38. Shao, J.; Wan, Z.; Liu, H.; Zheng, H.; Gao, T.; Shen, M.; Qu, Q.; Zheng, H. Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J. Mater. Chem. A 2014, 2, 12194–12200.

    Article  Google Scholar 

  39. Liang, Y.; Li, Y.; Wang, H.; Dai, H. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.

    Article  Google Scholar 

  40. Xia, X. H.; Chao, D. L.; Fan, Z. X.; Guan, C.; Cao, X. H.; Zhang, H.; Fan, H. J. A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: Structural design, fabrication, and full supercapacitor demonstrations. Nano Lett. 2014, 14, 1651–1658.

    Article  Google Scholar 

  41. Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 2012, 6, 3206–3213.

    Article  Google Scholar 

  42. Ryu, W. H.; Yoon, T. H.; Song, S. H.; Jeon, S.; Park, Y. J.; Kim, I. D. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries. Nano Lett. 2013, 13, 4190–4197.

    Article  Google Scholar 

  43. Sun, B.; Liu, H.; Munroe, P.; Ahn, H.; Wang, G. X. Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries. Nano Res. 2012, 5, 460–469.

    Article  Google Scholar 

  44. Wang, H.; Dai, H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.

    Article  Google Scholar 

  45. Wang, H.; Liang, Y.; Gong, M.; Li, Y.; Chang, W.; Mefford, T.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat. Commun. 2012, 3, 917.

    Article  Google Scholar 

  46. Wang, H. L.; Dai, H. J. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.

    Article  Google Scholar 

  47. Li, H.; Zhou, H. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.

    Article  Google Scholar 

  48. Zhang, P.; Guo, Z. P.; Huang, Y. D.; Jia, D. Z.; Liu, H. K. Synthesis of Co3O4/carbon composite nanowires and their electrochemical properties. J. Power Sources 2011, 196, 6987–6991.

    Article  Google Scholar 

  49. Chen, J.; Xia, X. H.; Tu, J. P.; Xiong, Q. Q.; Yu, Y. X.; Wang, X. L.; Gu, C. D. Co3O4C core-shell nanowire array as an advanced anode material for lithium ion batteries. J. Mater. Chem. 2012, 22, 15056–15061.

    Article  Google Scholar 

  50. Wu, F.; Ma, X.; Feng, J.; Qian, Y.; Xiong, S. 3D Co3O4 and CoO@C wall arrays: Morphology control, formation mechanism, and lithium-storage properties. J. Mater. Chem. A 2014, 2, 11597–11605.

    Article  Google Scholar 

  51. Wang, Y.; Zhang, H. J.; Lu, L.; Stubbs, L. P.; Wong, C. C.; Lin, J. Y. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. ACS Nano 2010, 4, 4753–4761.

    Article  Google Scholar 

  52. Zhang, H. J.; Bai, Y. J.; Zhang, Y.; Li, X.; Feng, Y. Y.; Liu, Q.; Wu, K.; Wang, Y. Designed synthesis of transition metal/oxide hierarchical peapods array with the superior lithium storage performance. Sci. Rep. 2013, 3, 2717.

    Google Scholar 

  53. Zhang, H.; Feng, Y.; Zhang, Y.; Fang, L.; Li, W.; Liu, Q.; Wu, K.; Wang, Y. Peapod-like composite with nickel phosphide nanoparticles encapsulated in carbon fibers as enhanced anode for Li-ion batteries. ChemSusChem 2014, 7, 2000–2006.

    Article  Google Scholar 

  54. Jiang, H.; Hu, Y.; Guo, S.; Yan, C.; Lee, P. S.; Li, C. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 2014, 8, 6038–6046.

    Article  Google Scholar 

  55. Xiong, S. L.; Chen, J. S.; Lou, X. W.; Zeng, H. C. Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)· 0.11H2O and their lithium-storage properties. Adv. Funct. Mater. 2012, 22, 861–871.

    Article  Google Scholar 

  56. Xie, K.; Wu, P.; Zhou, Y.; Ye, Y.; Wang, H.; Tang, Y.; Zhou, Y.; Lu, T. Nitrogen-doped carbon-wrapped porous single-crystalline CoO nanocubes for high-performance lithium storage. ACS Appl. Mater. Interfaces 2014, 6, 10602–10607.

    Article  Google Scholar 

  57. Jian, Z.; Liu, P.; Li, F.; Chen, M.; Zhou, H. Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. J. Mater. Chem. A 2014, 2, 13805–13809.

    Article  Google Scholar 

  58. He, X. F.; Wu, Y.; Zhao, F.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications. J. Mater. Chem. A 2013, 1, 11121–11125.

    Article  Google Scholar 

  59. Zhou, G. M.; Li, L.; Zhang, Q.; Li, N.; Li, F. Octahedral Co3O4 particles threaded by carbon nanotube arrays as integrated structure anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 5582–5587.

    Article  Google Scholar 

  60. Abbas, S. M.; Hussain, S. T.; Ali, S.; Ahmad, N.; Ali, N.; Munawar, K. S. Synthesis of carbon nanotubes anchored with mesoporous Co3O4 nanoparticles as anode material for lithium-ion batteries. Electrochim. Acta 2013, 105, 481–488.

    Article  Google Scholar 

  61. Liu, M.; Zhang, R.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117–5160.

    Article  Google Scholar 

  62. Yang, X. L.; Fan, K. C.; Zhu, Y. H.; Shen, J. H.; Jiang, X.; Zhao, P.; Li, C. Z. Tailored graphene-encapsulated mesoporous Co3O4 composite microspheres for high-performance lithium ion batteries. J. Mater. Chem. 2012, 22, 17278–17283.

    Article  Google Scholar 

  63. Chabot, V.; Higgins, D.; Yu, A. P.; Xiao, X. C.; Chen, Z. W.; Zhang, J. J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy Environ. Sci. 2014, 7, 1564–1596.

    Article  Google Scholar 

  64. Zhou, G. M.; Li, F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.

    Article  Google Scholar 

  65. Yang, S. B.; Cui, G. L.; Pang, S. P.; Cao, Q.; Kolb, U.; Feng, X. L.; Maier, J.; Mullen, K. Fabrication of cobalt and cobalt oxide/graphene composites: Towards high-performance anode materials for lithium ion batteries. ChemSusChem 2010, 3, 236–239.

    Article  Google Scholar 

  66. Xie, J. L.; Guo, C. X.; Li, C. M. Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ. Sci. 2014, 7, 2559–2579.

    Article  Google Scholar 

  67. Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium Ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

    Article  Google Scholar 

  68. Yang, S. B.; Feng, X. L.; Ivanovici, S.; Mullen, K. Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage. Angew. Chem. Int. Edit. 2010, 49, 8408–8411.

    Article  Google Scholar 

  69. Kim, H.; Seo, D. H.; Kim, S. W.; Kim, J.; Kang, K. Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon 2011, 49, 326–332.

    Article  Google Scholar 

  70. Chen, S. Q.; Wang, Y. Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 2010, 20, 9735–9739.

    Article  Google Scholar 

  71. Li, B.; Cao, H.; Shao, J.; Li, G.; Qu, M.; Yin, G. Co3O4@graphene composites as anode materials for high-performance lithium ion batteries. Inorg. Chem. 2011, 50, 1628–1632.

    Article  Google Scholar 

  72. Wang, L.; Zheng, Y.; Wang, X.; Chen, S.; Xu, F.; Zuo, L.; Wu, J.; Sun, L.; Li, Z.; Hou, H.; Song, Y. Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 7117–7125.

    Article  Google Scholar 

  73. Sun, Y.; Hu, X.; Luo, W.; Huang, Y. Ultrathin CoO/graphene hybrid nanosheets: A highly stable anode material for lithium-ion batteries. J. Phys. Chem. C 2012, 116, 20794–20799.

    Article  Google Scholar 

  74. Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.

    Article  Google Scholar 

  75. Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Ultrathin CoO/graphene hybrid nanosheets: A highly stable anode material for lithium-ion batteries. J. Phys. Chem. C 2012, 116, 20794–20799.

    Article  Google Scholar 

  76. Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Wu, Z.; Liu, Q. C.; Zhang, Y.; Zhang, X. B. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 2013, 23, 4345–4353.

    Article  Google Scholar 

  77. Qi, Y.; Zhang, H.; Du, N.; Yang, D. R. Highly loaded CoO/graphene nanocomposites as lithium-ion anodes with superior reversible capacity. J. Mater. Chem. A 2013, 1, 2337–2342.

    Article  Google Scholar 

  78. Sun, H.; Sun, X.; Hu, T.; Yu, M.; Lu, F.; Lian, J. Graphene-wrapped mesoporous cobalt oxide hollow spheres anode for high-rate and long-life lithium ion batteries. J. Phys. Chem. C 2014, 118, 2263–2272.

    Article  Google Scholar 

  79. Wang, Y.; Bai, Y. J.; Li, X.; Feng, Y. Y.; Zhang, H. J. A General strategy towards encapsulation of nanoparticles in sandwiched graphene sheets and the synergic effect on energy storage. Chem. Eur. J. 2013, 19, 3340–3347.

    Article  Google Scholar 

  80. Zhang, H. J.; Bai, Y. J.; Feng, Y. Y.; Li, X.; Wang, Y. Encapsulating magnetic nanoparticles in sandwich-like coupled graphene sheets and beyond. Nanoscale 2013, 5, 2243–2248.

    Article  Google Scholar 

  81. Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745–748.

    Article  Google Scholar 

  82. Zheng, F.; Zhu, D.; Chen, Q. Facile fabrication of porous NixCo3−x O4 nanosheets with enhanced electrochemical performance as anode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 9256–9264.

    Article  Google Scholar 

  83. Liu, B.; Wang, X. F.; Liu, B. Y.; Wang, Q. F.; Tan, D. S.; Song, W. F.; Hou, X. J.; Chen, D.; Shen, G. Z. Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Res. 2013, 6, 525–534.

    Article  Google Scholar 

  84. Liu, B.; Zhang, J.; Wang, X.; Chen, G.; Chen, D.; Zhou, C.; Shen, G. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.

    Article  Google Scholar 

  85. Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem. Int. Edit. 2014, 53, 1488–1504.

    Article  Google Scholar 

  86. Jadhav, H. S.; Kalubarme, R. S.; Park, C.-N.; Kim, J.; Park, C.-J. Facile and cost effective synthesis of mesoporous spinel NiCo2O4 as an anode for high lithium storage capacity. Nanoscale 2014, 6, 10071–10076.

    Article  Google Scholar 

  87. Li, J. F.; Xiong, S. L.; Li, X. W.; Qian, Y. T. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 2013, 5, 2045–2054.

    Article  Google Scholar 

  88. Li, J. F.; Wang, J. Z.; Liang, X.; Zhang, Z. J.; Liu, H. K.; Qian, Y. T.; Xiong, S. L. Hollow MnCo2O4 submicrospheres with multilevel interiors: From mesoporous spheres to yolk-in-double-shell structures. ACS Appl. Mater. Interfaces 2014, 6, 24–30.

    Article  Google Scholar 

  89. Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett 2012, 12, 3315–3321.

    Article  Google Scholar 

  90. Sun, S. J.; Wen, Z. Y.; Jin, J.; Cui, Y. M.; Lu, Y. Synthesis of ordered mesoporous CuCo2O4 with different textures as anode material for lithium ion battery. Micropor. Mesopor. Mater. 2013, 169, 242–247.

    Article  Google Scholar 

  91. Liu, J.; Liu, C.; Wan, Y.; Liu, W.; Ma, Z.; Ji, S.; Wang, J.; Zhou, Y.; Hodgson, P.; Li, Y. Facile synthesis of NiCo2O4 nanorod arrays on Cu conductive substrates as superior anode materials for high-rate Li-ion batteries. CrystEngComm 2013, 15, 1578–1585.

    Article  Google Scholar 

  92. Wang, Z. Y.; Wang, Z. C.; Liu, W. T.; Xiao, W.; Lou, X. W. Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ. Sci. 2013, 6, 87–91.

    Article  Google Scholar 

  93. Wang, Z. Y.; Wang, Z. C.; Wu, H. B.; Lou, X. W. Mesoporous single-crystal CoSn(OH)6 hollow structures with multilevel interiors. Sci. Rep. 2013, 3, 1391.

    Google Scholar 

  94. Zhang, G.; Lou, X. W. General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties. Angew. Chem. Int. Edit. 2014, 53, 9041–9044.

    Article  Google Scholar 

  95. Li, Z. Q.; Li, B.; Yin, L. W.; Qi, Y. X. Prussion blue-supported annealing chemical reaction route synthesized double-shelled Fe2O3/Co3O4 hollow microcubes as anode materials for lithium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 8098–8107.

    Article  Google Scholar 

  96. Kim, W. S.; Hwa, Y.; Kim, H. C.; Choi, J. H.; Sohn, H. J.; Hong, S. H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128–1136.

    Article  Google Scholar 

  97. Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res. 2013, 6, 167–173.

    Article  Google Scholar 

  98. Kong, D.; Luo, J.; Wang, Y.; Ren, W.; Yu, T.; Luo, Y.; Yang, Y.; Cheng, C. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage. Adv. Funct. Mater. 2014, 24, 3815–3826.

    Article  Google Scholar 

  99. Qi, Y.; Du, N.; Zhang, H.; Fan, X.; Yang, Y.; Yang, D. R. CoO/NiSix core-shell nanowire arrays as lithium-ion anodes with high rate capabilities. Nanoscale 2012, 4, 991–996.

    Article  Google Scholar 

  100. Chen, H.; Zhang, Q.; Wang, J.; Xu, D.; Li, X.; Yang, Y.; Zhang, K. Improved lithium ion battery performance by mesoporous Co3O4 nanosheets grown on self-standing NiSix nanowires on nickel foam. J. Mater. Chem. A 2014, 2, 8483–8490.

    Article  Google Scholar 

  101. Wang, J. X.; Zhang, Q. B.; Li, X. H.; Xu, D. G.; Wang, Z. X.; Guo, H. J.; Zhang, K. L. Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 2014, 6, 19–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, HJ., Liu, L., Mu, YP. et al. Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices. Nano Res. 8, 321–339 (2015). https://doi.org/10.1007/s12274-014-0589-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0589-6

Keywords

Navigation