Skip to main content
Log in

SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of materials with unique nanostructures is an effective strategy for the improvement of sodium storage in sodium ion batteries to achieve stable cycling performance and good rate capability. In this work, SnSbcore/carbon-shell nanocables directly anchored on graphene sheets (GS) were synthesized by the hydrothermal technique and chemical vapor deposition. The simultaneous carbon coating and the encapsulation of SnSb alloy is effective for alleviating the volume-change problem in sodium ion batteries. After optimizing the electrolyte for SnSb in the sodium ion batteries, the optimized coaxial SnSb/carbon nanocable/GS (SnSb/CNT@GS) nanostructure demonstrated stable cycling capability and rate performance in 1 M NaClO4 with propylene carbonate (PC) + 5% fluoroethylene carbonate (FEC). The SnSb/CNT@GS electrode can retain a capacity of 360 mAh/g for up to 100 cycles, which is 71% of the theoretical capacity. This is higher than in the other three electrolytes tested (1 M NaClO4 in PC, 1 M NaClO4 in PC/FEC (1:1 v/v) and 1 M NaPF6 + PC), and higher than that of the sample without the addition of graphene. The good electrochemical performance can be attributed to the efficient buffering provided by the outer carbon nanocable layer and the graphene inhibiting the agglomeration of SnSb particles, as well as its high conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  2. Wadia, C.; Albertus, P.; Srinivasan, V. Resource constraints on the battery energy storage potential for grid and transportation applications. J. Power Sources 2011, 196, 1593–1598.

    Article  Google Scholar 

  3. Tarascon, J. M. Key challenges in future Li-battery research. Philos. Trans. R. Soc. A 2010, 368, 3227–3241.

    Article  Google Scholar 

  4. Ellis, B. L.; Makahnouk, W. R. M.; Rowan-Weetaluktuk, W. N.; Ryan, D. H.; Nazar, L. F. Crystal structure and electrochemical properties of A 2 MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem. Mater. 2010, 22, 1059–1070.

    Article  Google Scholar 

  5. Kim, D.; Kang, S. H.; Slater, M.; Rood, S.; Vaughey, J. T.; Karan, N.; Balasubramanian, M.; Johnson, C. S. Enabling sodium batteries using lithium-substituted sodium layered rransition metal oxide cathodes. Adv. Energy Mater. 2011, 1, 333–336.

    Article  Google Scholar 

  6. Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 2007, 6, 749–753.

    Article  Google Scholar 

  7. Cao, Y. L.; Xiao, L. F.; Wang, W.; Choi, D. W.; Nie, Z. M.; Yu, J. G.; Saraf, L. V.; Yang, Z. G.; Liu, J. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv. Mater. 2011, 23, 3155–3160.

    Article  Google Scholar 

  8. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

    Article  Google Scholar 

  9. Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.

    Article  Google Scholar 

  10. Alcántara, R.; Lavela, P.; Ortiz, G. F.; Tirado, J. L. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem. Solid-State Lett. 2005, 8, A222–A225.

    Article  Google Scholar 

  11. Jian, Z. L.; Zhao, B.; Liu, P.; Li, F. J.; Zheng, M. B.; Chen, M. W.; Shi, Y.; Zhou, H. S. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem. Commun. 2014, 50, 1215–1217.

    Article  Google Scholar 

  12. Li, D.; Seng, K. H.; Shi, D. Q.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries. J. Mater. Chem. A 2013, 1, 14115–14121.

    Article  Google Scholar 

  13. Li, L.; Seng, K. H.; Feng, C. Q.; Liu, H. K.; Guo, Z. P. Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties. J. Mater. Chem. A 2013, 1, 7666–7672.

    Article  Google Scholar 

  14. Seng, K. H.; Park, M. H.; Guo, Z. P.; Liu, H. K.; Cho, J. Self-assembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery. Angew. Chem. Int. Ed. 2012, 51, 5657–5661.

    Article  Google Scholar 

  15. Seng, K. H.; Park, M. H.; Guo, Z. P.; Liu, H. K.; Cho, J. Catalytic role of Ge in highly reversible GeO2/Ge/C nanocomposite anode material for lithium batteries. Nano Lett. 2013, 13, 1230–1236.

    Article  Google Scholar 

  16. Park, M. S.; Needham, S. A.; Wang, G. X.; Kang, Y. M.; Park, J. S.; Dou, S. X.; Liu, H. K. Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries. Chem. Mater. 2007, 19, 2406–2410.

    Article  Google Scholar 

  17. Luo, B.; Wang, B.; Li, X. L.; Jia, Y. Y.; Liang, M. H.; Zhi, L. J. Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv. Mater. 2012, 24, 3538–3543.

    Article  Google Scholar 

  18. Chen, Z. X.; Cao, Y. L.; Qian, J. F.; Ai, X. P.; Yang, H. X. Pb-sandwiched nanoparticles as anode material for lithiumion batteries. J. Solid State Electrochem. 2012, 16, 291–295.

    Article  Google Scholar 

  19. Datta, M. K.; Epur, R.; Saha, P.; Kadakia, K.; Park, S. K.; Kumta, P. N. Tin and graphite based nanocomposites: Potential anode for sodium ion batteries. J. Power Sources 2013, 225, 316–322.

    Article  Google Scholar 

  20. Zhu, Y. J.; Han, X. G.; Xu, Y. H.; Liu, Y. H.; Zheng, S. Y.; Xu, K.; Hu, L. B.; Wang, C. S. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 2013, 7, 6378–6386.

    Article  Google Scholar 

  21. Lee, S. H.; Mathews, M.; Toghiani, H.; Wipf, D. O.; Pittman, C. U. Fabrication of carbon-encapsulated mono- and bimetallic (Sn and Sn/Sb alloy) nanorods. Potential lithium-ion battery anode materials. Chem. Mater. 2009, 21, 2306–2314.

    Article  Google Scholar 

  22. Luo, B.; Wang, B.; Liang, M. H.; Ning, J.; Li, X. L.; Zhi, L. J. Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties. Adv.Mater. 2012, 24, 1405–1409.

    Article  Google Scholar 

  23. Komaba, S.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Ito, A.; Ohsawa, Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 2011, 3, 4165–4168.

    Article  Google Scholar 

  24. Qian, J. F.; Chen, Y.; Wu, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 2012, 48, 7070–7072.

    Article  Google Scholar 

  25. Xiao, L. F.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem.Commun. 2012, 48, 3321–3323.

    Article  Google Scholar 

  26. Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J. M.; Palacín, M. R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 2012, 5, 8572–8583.

    Article  Google Scholar 

  27. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaiping Guo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Seng, K.H., Li, D. et al. SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Res. 7, 1466–1476 (2014). https://doi.org/10.1007/s12274-014-0506-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0506-z

Keywords

Navigation