Skip to main content

Advertisement

Log in

Nitrogen-doped carbon and reduced graphene oxide co-decorated SnS2 nanoplates for high efficiency lithium/sodium ion storage

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Laminated metal sulfide is a unique material with a graphite-like structure and good storage capacity for both lithium and sodium ions. However, the inherent low electrical conductivity and severe volume expansion of SnS2 lead to poor electrochemical properties, further limiting practical applications. In this work, a nitrogen-doped carbon (NC) and reduced graphene oxide (rGO) co-decorated SnS2 nanoplatelets (SnS2/NC-rGO) using dopamine (PDA) and graphene oxide (GO) as carbon sources are cleverly designed. SnS2/NC wrapped with rGO is synthesized via hydrothermal followed by calcination. This design not only increases the electrical conductivity of the composite but also provides more pathways for ions/electrons. Furthermore, the larger specific surface area of the composite allows better contact between the electrolyte and the electrode, which further enhances the redox dynamics of lithium ions/sodium ions. Thanks to this structure, the charge/discharge specific capacity of the SnS2/NC-rGO composite electrode is 1215.8/1220.7 mAh g−1 after 200 cycles at 0.1 A g−1. The superior sodium storage performance has also been demonstrated in sodium-ion batteries, where a high specific capacity of 501.6 mAh g−1 can be achieved after 80 cycles at a current density of 0.1 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary information files.

References

  1. Nowotny J, Dodson J, Fiechter S, Gur TM, Kennedy B, Macyk W, Bak T, Sigmund W, Yamawaki M, Rahman KA (2018) Towards global sustainability: education on environmentally clean energy technologies. Renew Sustain Energy Rev 81:2541–2551

    Article  Google Scholar 

  2. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614

    Article  CAS  PubMed  Google Scholar 

  3. Liang YR, Lai WH, Miao ZC, Chou SL (2018) Nanocomposite materials for the sodium-ion battery: a review. Small 14:1702514

    Article  Google Scholar 

  4. Rosaiah P, Niyitanga T, Sambasivam S, Kim H (2022) Graphene based magnetite carbon nanofiber composites as anodes for high-performance Li-ion batteries. New J Chem 47:482–490

    Article  Google Scholar 

  5. van Kooten GC, Withey P, Duan J (2020) How big a battery? Renewable Energy 146:196–204

    Article  Google Scholar 

  6. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  7. Xu W, Li Y, Yao J, Xiao S, Liu B (2023) LiFePO4/rGO composite prepared from the leaching liquor of jarosite residue as a cathode material for lithium-ion batteries. J Alloy Compd 952:170105

    Article  CAS  Google Scholar 

  8. Xie YY, Xu GL, Che HY, Wang H, Yang K, Yang XR, Guo FM, Ren Y, Chen ZH, Amine K, Ma ZF (2018) Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chem Mater 30:4909–4918

    Article  CAS  Google Scholar 

  9. Liu KY, Li C, Yan LJ, Fan MQ, Wu YC, Meng XH, Ma TL (2021) MOFs and their derivatives as Sn-based anode materials for lithium/sodium ion batteries. J Mater Chem A 9:27234–27251

    Article  CAS  Google Scholar 

  10. Su XH, Su D, Sang ZY, Yan X, Liang J (2021) Shielded SnS2/SnS heterostructures on three-dimensional graphene framework for high-rate and stable sodium-ion storage. Electrochim Acta 372:137800

    Article  CAS  Google Scholar 

  11. Wang J, Zhang ZJ, Zhao HL (2021) SnS2-SnS pn hetero-junction bonded on graphene with boosted charge transfer for lithium storage. Nanoscale 13:20481–20487

    Article  CAS  PubMed  Google Scholar 

  12. Choi SH, Kang YC (2015) Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res 8:1595–1603

    Article  CAS  Google Scholar 

  13. Li Z, Ding J, Mitlin D (2015) Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res 48:1657–1665

    Article  CAS  PubMed  Google Scholar 

  14. Hu MX, Zhang HW, Yang L, Lv RT (2019) Ultrahigh rate sodium-ion storage of SnS/SnS2 heterostructures anchored on S-doped reduced graphene oxide by ion-assisted growth. Carbon 143:21–29

    Article  CAS  Google Scholar 

  15. Xie XQ, Su DW, Chen SQ, Zhang JQ, Dou SX, Wang GX (2014) SnS2 Nanoplatelet@Graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chemistry-an Asian Journal 9:1611–1617

    Article  CAS  PubMed  Google Scholar 

  16. Ke GX, Chen HH, He J, Wu XC, Gao Y, Li YL, Mi HW, Zhang QL, He CX, Ren XZ (2021) Ultrathin MoS2 anchored on 3D carbon skeleton containing SnS quantum dots as a high-performance anode for advanced lithium ion batteries. Chem Eng J 403:126251

    Article  CAS  Google Scholar 

  17. Xiao XY, Zhao FJ, Liu J, Wang Z, Sui QX, Tan MX (2021) Synthesis of hexahedron SnS2/C derived from tin metal-organic frameworks (Sn-MOF) as a promising anode for lithium-ion batteries. Mater Lett 296:129877

    Article  CAS  Google Scholar 

  18. Cheng YY, Xie H, Zhou L, Shi BY, Guo L, Huang JF (2021) In-situ liquid-phase transformation of SnS2/CNTs composite from SnO2/CNTs for high performance lithium-ion battery anode. Appl Surf Sci 566:150645

    Article  CAS  Google Scholar 

  19. Chen L, Ma K, Zhou LL, Jiang H, Hu YJ, Li CZ (2022) Confining ultrafine SnS2 nanoparticles into MXene interlayer toward fast and stable lithium storage. Chem Eng Sci 247:117087

    Article  CAS  Google Scholar 

  20. Ou X, Cao L, Liang XH, Zheng FH, Zheng HS, Yang XF, Wang JH, Yang CH, Liu ML (2019) Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability. ACS Nano 13:3666–3676

    Article  CAS  PubMed  Google Scholar 

  21. Wang XZ, Yao ZP, Hwang S, Zhang L, Fu MS, Li S, Mai LQ, Xu QY, Su D (2021) On the irreversible sodiation of tin disulfide. Nano Energy 79:105458

    Article  CAS  Google Scholar 

  22. Yu XL, Chen CM, Li RX, Yang T, Wang WL, Dai Y (2022) Construction of SnS2@MoS2@rGO heterojunction anode and their half/full sodium ion storage performances. J Alloy Compd 896:162784

    Article  CAS  Google Scholar 

  23. Zhao CT, Yu C, Qiu B, Zhou S, Zhang MD, Huang HW, Wang BQ, Zhao JJ, Sun XL, Qiu JS (2018) Ultrahigh rate and long-life sodium-ion batteries enabled by engineered surface and near-surface reactions. Adv Mater 30:1702486

    Article  Google Scholar 

  24. Jin SB, Sun XH, Cai S, Guo JZ, Fan AR, Zhang N, Wu H, Zheng CM (2020) SnS2 quantum dots uniformly anchored on dispersed S-doped graphene as high-rate anodes for sodium-ion batteries. Ceram Int 46:14416–14424

    Article  CAS  Google Scholar 

  25. Maity CK, Sahoo S, Verma K, Nayak GC (2022) SnS2@Conducting energy level-induced functionalized boron nitride for an asymmetric supercapacitor. Energy Fuels 36:2248–2259

    Article  CAS  Google Scholar 

  26. Veerasubramani GK, Park MS, Choi JY, Kim DW (2020) Ultrasmall SnS quantum dots anchored onto nitrogen-enriched carbon nanospheres as an advanced anode material for sodium-ion batteries. ACS Appl Mater Interfaces 12:7114–7124

    Article  CAS  PubMed  Google Scholar 

  27. Li H, He YY, Dai YX, Ren YQ, Gao TT, Zhou GW (2022) Bimetallic SnS2/NiS2@S-rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries. Chem Eng J 427:131784

    Article  CAS  Google Scholar 

  28. Divya P, Prakash NG, Ko TJ, Rosaiah P (2022) Metal/metal oxide (N-MnO/rGO) encapsulated carbon nanofiber composites for high-performance Li-ion batteries. J Cluster Sci

  29. Xu XB, Wu J, Lou BQ, Xu ZH, Xu JM, Sheng WQ (2023) Enhanced rate capability of S@Co3O4 microsphere wrapped by rGO for cathodes of lithium-sulfur batteries. Mater Lett 336:133902

    Article  CAS  Google Scholar 

  30. Rosaiah P, Divya P, Prakash NG, Dhananjaya M, Sambasivam S, Al-Asbahi BA, Shaik D, Ko TJ (2023) Ultra-long MnO2 nanowire-entrenched reduced graphene oxide composite electrodes for energy storage. Diam Relat Mater 133:109709

    Article  CAS  Google Scholar 

  31. Teng C, Xie D, Wang JF, Yang Z, Ren GY, Zhu Y (2017) Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv Func Mater 27:1700240

    Article  Google Scholar 

  32. Huang YD, Yu RT, Mao GQ, Yu WJ, Ding ZY, Cao YB, Zheng JC, Chu DW, Tong H (2020) Unique FeP@C with polyhedral structure in-situ coated with reduced graphene oxide as an anode material for lithium ion batteries. J Alloy Compd 841:155670

    Article  CAS  Google Scholar 

  33. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    Article  CAS  Google Scholar 

  34. Sang ZY, Yan X, Su D, Ji HM, Wang SH, Dou SX, Liang J (2020) A flexible film with SnS2 nanoparticles chemically anchored on 3D-graphene framework for high areal density and high rate sodium storage. Small 16:2001265

    Article  CAS  Google Scholar 

  35. Wang WW, Guo SZ, Zhang PL, Zhou JJ, Yang Y, Wang WQ, Xu XC, Chen FP, Chen LY (2021) Polypyrrole-wrapped SnS2 vertical nanosheet arrays grown on three-dimensional nitrogen-doped porous graphene for high-performance lithium and sodium storage. Acs Appl Energy Mater 4:11101–11111

    Article  CAS  Google Scholar 

  36. Jiang Y, Song DY, Wu J, Wang ZX, Huang SS, Xu Y, Chen ZW, Zhao B, Zhang JJ (2019) Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials. ACS Nano 13:9100–9111

    Article  CAS  PubMed  Google Scholar 

  37. Liu XJ, Hao YC, Shu J, Sari HMK, Lin LX, Kou HR, Li JW, Liu W, Yan B, Li DJ, Zhang JJ, Li XF (2019) Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy 57:414–423

    Article  CAS  Google Scholar 

  38. Youn DH, Stauffer SK, Xiao PH, Park H, Nam YJ, Dolocan A, Henkelman G, Heller A, Mullins CB (2016) Simple synthesis of nanocrystalline tin sulfide/N-doped reduced graphene oxide composites as lithium ion battery anodes. ACS Nano 10:10778–10788

    Article  CAS  PubMed  Google Scholar 

  39. Zhang YG, Guo Y, Wang YG, Peng T, Lu Y, Luo RJ, Wang YB, Liu XM, Kim JK, Luo YS (2018) Rational design of 3D honeycomb-like SnS2 quantum dots/rGO composites as high-performance anode materials for lithium/sodium-ion batteries. Nanoscale Res Lett 13:1–10

    Article  Google Scholar 

  40. Liu JZ, Zhang PL, Yu D, Li K, Wu J, Wang WW, Zhou CC, Zhou JJ, Lei YC, Chen LY (2021) Hierarchical Co2VO4 yolk-shell microspheres confined by N-doped carbon layer as anode for high-rate lithium-ion batteries. J Electroanal Chem 882:115027

    Article  CAS  Google Scholar 

  41. Wu YQ, Yang Y, Pu H, Gao RZ, Meng WJ, Yang HX, Zhao DL (2020) SnS2 nanoparticle-integrated graphene nanosheets as high-performance and cycle-stable anodes for lithium and sodium storage. J Alloy Compd 822:153686

    Article  CAS  Google Scholar 

  42. Liu JD, Chang YF, Sun K, Guo PQ, Cao DL, Ma YD, Liu DQ, Liu QM, Fu YJ, Liu J, He DY (2022) Sheet-like stacking SnS2/rGO heterostructures as ultrastable anodes for lithium-ion batteries. ACS Appl Mater Interfaces 14:11739–11749

    Article  CAS  PubMed  Google Scholar 

  43. Hui X, Zhao JC, Mao JF, Zhao HB (2023) Reduced graphene oxide-wrapped copper cobalt selenide composites as anode materials for high-performance lithium-ion batteries. Colloids Surf a-Physicochem Eng Aspects 663:130979

    Article  CAS  Google Scholar 

  44. Zhou HY, Zhao YM, Jin Y, Fan QH, Dong YZ, Kuang Q (2023) Bimetallic phosphide Ni2P/CoP@rGO heterostructure for high-performance lithium/sodium-ion batteries. J Power Sources 560:232715

    Article  CAS  Google Scholar 

  45. Zhang YY, Chen P, Wang QY, Wang Q, Zhu K, Ye K, Wang GL, Cao DX, Yan J, Zhang Q (2021) High-capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure. Adv Energy Mater 11:2101712

    Article  CAS  Google Scholar 

  46. Zhan WW, Zhu M, Lan JL, Yuan HC, Wang HJ, Yang XP, Sui G (2020) All-in-one MoS2 nanosheets tailored by porous nitrogen-doped graphene for fast and highly reversible sodium storage. ACS Appl Mater Interfaces 12:51488–51498

    Article  CAS  PubMed  Google Scholar 

  47. Zong LS, Yan L, Zhang S, Sun Q, Zhang ZJ, Ge LJ, Kang JL (2021) Flexible SnS2/CNTs/porous Cu tube textile anode for enhanced sodium-ion batteries. Electrochim Acta 396:139243

    Article  CAS  Google Scholar 

  48. Wang B, Yang L, Yuan F, Zhang D, Wang H, Wang J, Wang QJ, Li ZJ (2022) Engineering structure constructed CoP anode with enhanced bulk phase diffusion ability for superior potassium-ion storage. J Alloy Compd 925:166679

    Article  CAS  Google Scholar 

  49. Cao L, Gao XW, Zhang B, Ou X, Zhang JF, Luo WB (2020) Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 14:3610–3620

    Article  CAS  PubMed  Google Scholar 

  50. Liu K, Wang JA, Lou CJ, Zhou ZR, Zhang N, Yu YT, Zhang QX, Henkelman G, Tang MX, Sun JC (2023) Simple construction and reversible sequential evolution mechanism of nitrogen-doped mesoporous carbon/SnS2 nanosheets in lithium-ion batteries. Appl Surf Sci 618:156673

    Article  CAS  Google Scholar 

  51. Cheng M, Hu QQ, Du CF, Li JL, Liao WH, Li JR, Huang XY (2021) An ionic liquid-assisted route towards SnS2 nanoparticles anchored on reduced graphene oxide for lithium-ion battery anode. J Solid State Chem 296:122022

    Article  CAS  Google Scholar 

  52. Luan H, Liu K, Zhou YH, Sun JC (2022) Enhanced electrochemical performance of mesoporous spherical SnS2/porous carbon composite prepared by dual-solvent hydrothermal method for lithium-ion batteries. Ionics 28:4997–5004

    Article  CAS  Google Scholar 

  53. Wu YQ, Zhao YS, Meng WJ, Xie Y, Zhang J, He CJ, Zhao DL (2021) Nanoplates-assembled SnS2 nanoflowers with carbon coating anchored on reduced graphene oxide for high performance Li-ion batteries. Appl Surf Sci 539:148283

    Article  CAS  Google Scholar 

  54. Xu L, Wu XY, Wang JH, Dong Y, Wang DG, Wang R, Han J, Lv RG, Chen M (2022) Ultrafine nanocrystals SnS2 confined on the inner wall of hollow mesoporous carbon nanospheres with hybrid storage mechanism for high-performance Li+/Na+ batteries. Adv Mater Interfaces 9:2201057

    Article  CAS  Google Scholar 

  55. Wang MR, Li DD, Li GS, Li YL, Butenko DS, Milinevsky G, Li JZ, Han W (2022) Bioconfined SnS2 N-doped carbon fibers with multiwall robust structure for boosting sodium storage. Appl Surf Sci 605:154633

    Article  CAS  Google Scholar 

  56. Li Q, Yu FY, Cui YR, Wang J, Zhao Y, Peng JH (2023) Multilayer SnS-SnS2@GO heterostructures nanosheet as anode material for sodium ion battery with high capacity and stability. J Alloy Compd 937:168392

    Article  CAS  Google Scholar 

  57. He XT, Liu JB, Kang BY, Li XY, Zeng LX, Liu YR, Qiu JB, Qian QR, Wei MD, Chen QH (2021) Preparation of SnS2/enteromorpha prolifera derived carbon composite and its performance of sodium-ion batteries. J Phys Chem Solids 152:109976

    Article  CAS  Google Scholar 

  58. Li CP, Pfeifer K, Luo XL, Melinte G, Wang JS, Zhang ZF, Zhang YJ, Dong P, Sarapulova A, Ehrenberg H, Dsoke S (2023) Investigation of SnS2-rGO sandwich structures as negative electrode for sodium-ion and potassium-ion batteries. Chemsuschem 16:e202202281

    Article  CAS  PubMed  Google Scholar 

  59. Zhang LX, Peng F, Zhang M, Li D, Pan QC, Yang GH, Zheng FH, Huang YG, Wang HQ, Li QY (2022) Heterostructured FeS2/SnS2 nanoparticles anchored on graphene for advanced lithium and sodium-ion batteries br. Appl Surf Sci 606:154864

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51572012) and the Fundamental Research Funds for the Central Universities (JD2311).

Author information

Authors and Affiliations

Authors

Contributions

H-YW: conceptualization, writing—original draft preparation, investigation, writing—reviewing and editing. X-XY: investigation, resources, formal analysis. FG: conceptualization, writing—reviewing and editing, investigation. B-HZ: formal analysis, resources, methodology. W-XW: methodology, data curation, resources. J-ZC: methodology, data curation, resources. Y-LH: investigation, resources, formal analysis. D-LZ: project administration, supervision, funding acquisition, conceptualization, investigation, writing—reviewing and editing.

Corresponding authors

Correspondence to Fen Gao or Dong-Lin Zhao.

Ethics declarations

Ethical approval

This work is not about both human and/or animal studies.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7794 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HY., Yang, XX., Gao, F. et al. Nitrogen-doped carbon and reduced graphene oxide co-decorated SnS2 nanoplates for high efficiency lithium/sodium ion storage. Ionics 29, 3559–3572 (2023). https://doi.org/10.1007/s11581-023-05092-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05092-x

Keywords

Navigation