Skip to main content
Log in

Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Tin-based compounds are deemed as suitable anode candidates affording promising sodium-ion storages for rechargeable batteries and hybrid capacitors. However, synergistically tailoring the electrical conductivity and structural stability of tin-based anodes to attain durable sodium-ion storages remains challenging to date for its practical applications. Herein, metal-organic framework (MOF) derived SnSe/C wrapped within nitrogen-doped graphene (NG@SnSe/C) is designed targeting durable sodium-ion storage. NG@SnSe/C possesses favorable electrical conductivity and structure stability due to the “inner” carbon framework from the MOF thermal treatment and “outer” graphitic cage from the direct chemical vapor deposition synthesis. Consequently, NG@SnSe/C electrode can obtain a high reversible capacity of 650 mAh·g−1 at 0.05 A·g−1, a favorable rate performance of 287.8 mAh·g−1 at 5 A·g−1 and a superior cycle stability with a negligible capacity decay of 0.016% per cycle over 3,200 cycles at 0.4 A·g−1. Theoretical calculations reveal that the nitrogen-doping in graphene can stabilize the NG@SnSe/C structure and improve the electrical conductivity. The reversible Na-ion storage mechanism of SnSe is further investigated by in-situ X-ray diffraction/ex-situ transmission electron microscopy. Furthermore, assembled sodium-ion hybrid capacitor full-cells comprising our NG@SnSe/C anode and an active carbon cathode harvest a high energy/power density of 115.5 Wh·kg−1/5,742 W·kg−1, holding promise for next-generation energy storages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev.2011, 111, 3577–3613.

    CAS  Google Scholar 

  2. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci.2012, 5, 5884–5901.

    CAS  Google Scholar 

  3. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater.2013, 23, 947–958.

    CAS  Google Scholar 

  4. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev.2014, 114, 11636–11682.

    CAS  Google Scholar 

  5. Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev.2017, 46, 3529–3614.

    CAS  Google Scholar 

  6. Qian, J. F.; Chen, Y.; Wu, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun.2012, 48, 7070–7072.

    CAS  Google Scholar 

  7. Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun.2014, 5, 4033.

    CAS  Google Scholar 

  8. Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater.2014, 26, 3854–3859.

    CAS  Google Scholar 

  9. Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol.2015, 10, 980–985.

    CAS  Google Scholar 

  10. Lu, Y. Y.; Zhang, N.; Jiang, S.; Zhang, Y. D.; Zhou, M.; Tao, Z. L.; Archer, L. A.; Chen, J. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide–graphene foam architecture. Nano Lett.2017, 17, 3668–3674.

    CAS  Google Scholar 

  11. Wang, X. G.; Li, Q. C.; Zhang, L.; Hu, Z. L.; Yu, L. H.; Jiang, T.; Lu, C.; Yan, C. L.; Sun, J. Y.; Liu, Z. F. Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv. Mater.2018, 30, 1800963

    Google Scholar 

  12. Lu, C.; Li, Z. Z.; Yu, L. H.; Zhang, L.; Xia, Z.; Jiang, T.; Yin, W. J.; Dou, S. X.; Liu, Z. F.; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res.2018, 11, 4614–4626.

    CAS  Google Scholar 

  13. Xia, Z.; Sun, H.; He, X.; Sun, Z. T.; Lu, C.; Li, J.; Peng, Y.; Dou, S. X.; Sun, J. Y.; Liu, Z. F. In situ construction of CoSe2@vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy2019, 60, 385–393.

    CAS  Google Scholar 

  14. Wei, Z. X.; Wang, L.; Zhuo, M.; Ni, W.; Wang, H. X.; Ma, J. M. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J. Mater. Chem. A2018, 6, 12185–12214.

    CAS  Google Scholar 

  15. Liu, H.; Guo, H.; Liu, B.; Liang, M.; Lv, Z.; Adair, K. R.; Sun, X. L. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv. Funct. Mater.2018, 28, 1707480.

    Google Scholar 

  16. Wang, S. B.; Fang, Y. J.; Wang, X.; Lou, X. W. Hierarchical microboxes constructed by SnS nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew. Chem., Int. Ed.2019, 58, 760–763.

    CAS  Google Scholar 

  17. Zhao, Y.; Guo, B. B.; Yao, Q. Q.; Li, J. X.; Zhang, J. S.; Hou, K.; Guan, L. H. A rational microstructure design of SnS2–carbon composites for superior sodium storage performance. Nanoscale2018, 10, 7999–8008.

    CAS  Google Scholar 

  18. Kim, Y.; Kim, Y.; Park, Y.; Jo, Y. N.; Kim, Y. J.; Choi, N. S.; Lee, K. T. SnSe alloy as a promising anode material for Na-ion batteries. Chem. Commun.2015, 51, 50–53.

    CAS  Google Scholar 

  19. Zhang, F.; Xia, C.; Zhu, J. J.; Ahmed, B.; Liang, H. F.; Velusamy, D. B.; Schwingenschlögl, U.; Alshareef, H. N. SnSe2 2D anodes for advanced sodium ion batteries. Adv. Energy Mater.2016, 6, 1601188.

    Google Scholar 

  20. Park, G. D.; Lee, J. H.; Kang, Y. C. Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process. Nanoscale2016, 8, 11889–11896.

    CAS  Google Scholar 

  21. Wang, W.; Li, P. H.; Zheng, H.; Liu, Q.; Lv, F.; Wu, J. D.; Wang, H.; Guo, S. J. Ultrathin layered snse nanoplates for low voltage, high-rate, and long-life alkali-ion batteries. Small2017, 13, 1702228.

    Google Scholar 

  22. Yuan, S.; Zhu, Y. H.; Li, W.; Wang, S.; Xu, D.; Li, L.; Zhang, Y.; Zhang, X. B. Surfactant-free aqueous synthesis of pure single-crystalline snse nanosheet clusters as anode for high energy- and power-density sodium-ion batteries. Adv. Mater.2017, 29, 1602469.

    Google Scholar 

  23. Chen, R. S.; Li, S. Z.; Liu, J. Y.; Li, Y. Y.; Ma, F.; Liang, J. S.; Chen, X.; Miao, Z. P.; Han, J. T.; Wang, T. Y. et al. Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochim. Acta2018, 282, 973–980.

    CAS  Google Scholar 

  24. Ren, X. C.; Wang, J. S.; Zhu, D. M.; Li, Q. W.; Tian, W. F.; Wang, L.; Zhang, J. B.; Miao, L.; Chu, P. K.; Huo, K. F. Sn-C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for highperformance sodium-ion battery anodes. Nano Energy2018, 54, 322–330.

    CAS  Google Scholar 

  25. Zhou, X. Y.; Chen, S. M.; Yang, J.; Bai, T.; Ren, Y. P.; Tian. H. Y. Metal–organic frameworks derived okra-like SnO2 encapsulated in nitrogen-doped graphene for lithium ion battery. ACS Appl. Mater. Interfaces2017, 9, 14309–14318.

    CAS  Google Scholar 

  26. Xiong, X. H.; Yang, C. H.; Wang, G. H.; Lin, Y. W.; Ou, X.; Wang, J. H.; Zhao, B. T.; Liu, M. L.; Lin, Z.; Huang, K. SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci.2017, 10, 1757–1763.

    CAS  Google Scholar 

  27. Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater.2018, 30, 1800036.

    Google Scholar 

  28. Chao, D. L.; Ouyang, B.; Liang, P.; Huong, T. T. T.; Jia, G. C.; Huang, H.; Xia, X. H.; Rawat, R. S.; Fan, H. J. C-plasma of hierarchical graphene survives SnS bundles for ultrastable and high volumetric Na-ion storage. Adv. Mater.2018, 30, 1804833.

    Google Scholar 

  29. Lu, Y.; Lu, Y. Y.; Niu, Z. Q.; Chen, J. Graphene-based nanomaterials for sodium-ion batteries. Adv. Energy Mater.2018, 8, 1702469.

    Google Scholar 

  30. Hu, X. D.; Sun, X. H.; Yoo, S. J.; Evanko, B.; Fan, F. R.; Cai, S.; Zheng, C. M.; Hu, W. B.; Stucky, G. D. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy2019, 56, 828–839.

    CAS  Google Scholar 

  31. Bommier, C.; Ji, X. L. Electrolytes, SEI formation, and binders: A review of nonelectrode factors for sodium-ion battery anodes. Small2018, 14, 1703576.

    Google Scholar 

  32. Lan, Y.; Zhou, J. B.; Xu, K. L.; Lu, Y.; Zhang, K. L.; Zhu, L. Q.; Qian, Y. T. Synchronous synthesis of Kirkendall effect induced hollow FeSe2/C nanospheres as anodes for high performance sodium ion batteries. Chem. Commun.2018, 54, 5704–5707.

    CAS  Google Scholar 

  33. Ge, P.; Hou, H. S.; Li, S. J.; Huang, L. P.; Ji, X. B. Three-dimensional hierarchical framework assembled by cobblestone-like CoSe2@C nanospheres for ultrastable sodium-ion storage. ACS Appl. Mater. Interfaces2018, 10, 14716–14726.

    CAS  Google Scholar 

  34. Wan, M.; Zeng, R.; Chen, K. Y.; Liu, G. X.; Chen, W. L.; Wang, L. L.; Zhang, N.; Xue, L. H.; Zhang, W. X.; Huang, Y. H. Fe7Se8 nanoparticles encapsulated by nitrogen-doped carbon with high sodium storage performance and evolving redox reactions. Energy Storage Mater.2018, 10, 114–121.

    Google Scholar 

  35. Yang, X. M.; Zhang, J. L.; Wang, Z. G.; Wang, H. K.; Zhi, C. Y.; Yu, D. Y. W.; Rogach, A. Carbon-supported nickel selenide hollow nanowires as advanced anode materials for sodium-ion batteries. Small2017, 14, 1702669.

    Google Scholar 

  36. Tang, C. J.; Wei, X. J.; Cai, X. Y.; An, Q. Y.; Hu, P.; Sheng, J. Z.; Zhu, J. X.; Chou, S. L.; Wu, L. M.; Mai, L. Q. ZnSe microsphere/multiwalled carbon nanotube composites as high-rate and long-life anodes for sodium-ion batteries. ACS Appl. Mater. Interfaces2018, 10, 19626–19632.

    CAS  Google Scholar 

  37. Yin, H.; Qu, H. Q.; Liu, Z. T.; Jiang, R. Z.; Li, C.; Zhu, M. Q. Long cycle life and high rate capability of three dimensional CoSe2 grain-attached carbon nanofibers for flexible sodium-ion batteries. Nano Energy2019, 58, 715–723.

    CAS  Google Scholar 

  38. Zhou, J.; Chen, J. C.; Chen, M. X.; Wang, J.; Liu, X. Z.; Wei, B.; Wang, Z. C.; Li, J. J.; Gu, L.; Zhang, Q. H. et al. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Adv. Mater.2019, 31, 1807874.

    Google Scholar 

  39. Wu, C.; Dou, S. X.; Yu, Y. The state and challenges of anode materials based on conversion reactions for sodium storage. Small2018, 14, 1703671.

    Google Scholar 

  40. Yu, D. X.; Pang, Q.; Gao, Y.; Wei, Y. Y.; Wang, C. Z.; Chen, G.; Du, F. Hierarchical flower-like VS2 nanosheets–a high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Mater.2018, 11, 1–7.

    Google Scholar 

  41. Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA2017, 114, 840–845.

    CAS  Google Scholar 

  42. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater.2013, 12, 518–522.

    CAS  Google Scholar 

  43. Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C2007, 111, 14925–14931.

    CAS  Google Scholar 

  44. Shi, H. X.; Fang, Z. W.; Zhang, X.; Li, F.; Tang, Y. W.; Zhou, Y. M.; Wu, P.; Yu, G. H. Double-network nanostructured hydrogel-derived ultrafine Sn–Fe alloy in three-dimensional carbon framework for enhanced lithium storage. Nano Lett.2018, 18, 3193–3198.

    CAS  Google Scholar 

  45. Zhao, X.; Cai, W.; Yang, Y.; Song, X. D.; Neale, Z.; Wang, H. E.; Sui, J. H.; Cao, G. Z. MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy2018, 47, 224–234.

    CAS  Google Scholar 

  46. Li, Y. Z.; Wang, H. W.; Huang, B. J.; Wang, L. B.; Wang, R.; He, B. B.; Gong, Y. S.; Hu, X. L. Mo2C-induced solid-phase synthesis of ultrathin MoS2 nanosheet arrays on bagasse-derived porous carbon frameworks for high-energy hybrid sodium-ion capacitors. J. Mater. Chem. A2018, 6, 14742–14751.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51702225), the National Key Research and Development Program (No. 2016YFA0200103), and Natural Science Foundation of Jiangsu Province (No. BK20170336). C. L., Z. Z. L., Z. X., H. N. C., Y. Z. S., L. H. Y., W. J. Y., J. Y. S., and Z. F. L. acknowledge the support from Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Suzhou, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingyu Sun or Zhongfan Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Li, Z., Xia, Z. et al. Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Res. 12, 3051–3058 (2019). https://doi.org/10.1007/s12274-019-2551-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2551-0

Keywords

Navigation