Skip to main content

Advertisement

Log in

A high mass loading electrode based on ultrathin Co3S4 nanosheets for high performance supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

There is a growing need for the electrode with high mass loading of active materials, where both high energy and high power densities are required, in current and near-future applications of supercapacitor. Here, an ultrathin Co3S4 nanosheet decorated electrode (denoted as Co3S4/NF) with mass loading of 6 mg cm−2 is successfully fabricated by using highly dispersive Co3O4 nanowires on Ni foam (NF) as template. The nanosheets contained lots of about 3∼5 nm micropores benefiting for the electrochemical reaction and assembled into a three-dimensional, honeycomb-like network with 0.5∼1 μm mesopore structure for promoting specific surface area of electrode. The improved electrochemical performance was achieved, including an excellent cycliability of 10,000 cycles at 10 A g−1 and large specific capacitances of 2415 and 1152 F g−1 at 1 and 20 A g−1, respectively. Impressively, the asymmetric supercapacitor assembled with the activated carbon (AC) and Co3S4/NF electrode exhibits a high energy density of 79 Wh kg−1 at a power density of 151 W kg−1, a high power density of 3000 W kg−1 at energy density of 30 Wh kg−1 and 73 % retention of the initial capacitance after 10,000 charge-discharge cycles at 2 A g−1. More importantly, the formation process of the ultrathin Co3S4 nanosheets upon reaction time is investigated, which is benefited from the gradual infiltration of sulfide ions and the template function of ultrafine Co3O4 nanowires in the anion-exchange reaction.

The ultrathin 2D Co3S4 nanosheets fabricated on 3D Ni foam and the formation process of the ultrathin Co3S4 nanosheets upon reaction times has been investigated. At the same time, the Co3S4/NF electrode displays an outstanding specific capacitance of 2420 F g−1 at 1 A g−1 with high mass loading of 6 mg cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu YW, Xiao C, Lyu MJ, Lin Y, Cai WZ, Huang PC, Tong W, Zou YM, Xie Y (2015) Angew Chem Int Edit 54:11231–11235

    Article  CAS  Google Scholar 

  2. Xu MY, Niu HL, Huang JJ, Song JM, Mao CJ, Zhang SY, Zhu CF, Chen CL (2015) Appl Surf Sci 351:374–381

    Article  CAS  Google Scholar 

  3. Wang HG, Li ZP, Li GH, Peng F, Yu H (2015) Catal Today 245:74–78

    Article  CAS  Google Scholar 

  4. Mahmood N, Zhang CZ, Jiang J, Liu F, Hou YL (2013) Chem Eur J 19:5183–5190

    Article  CAS  Google Scholar 

  5. Feng YJ, He T, Alonso N (2008) Chem Mater 20:26–28

    Article  CAS  Google Scholar 

  6. Bao SJ, Li YB, Li Chang M, Bao QL, Lu Q, Guo J (2008) Cryst Growth Des 8:3745–3749

    Article  CAS  Google Scholar 

  7. Sennu P, Christy M, Aravindan V, Lee YG, Nahm KS, Lee YS (2015) Chem Mater 27:5726–5735

    Article  CAS  Google Scholar 

  8. Du YC, Zhu XS, Zhou XS, Hu LY, Dai ZH, Bao JC (2015) J Mater Chem A 3:6787–6791

    Article  CAS  Google Scholar 

  9. Luo Q, Gu YC, Li JB, Wang N, Lin H (2016) J Power Sources 312:93–100

    Article  CAS  Google Scholar 

  10. Hu ZL, Xia K, Zhang J, Hu ZY, Zhu YJ (2014) RSC Adv 4:42917–42923

    Article  CAS  Google Scholar 

  11. Zhang QF, Xu CM, Lu BG (2014) Electrochim Acta 132:180–185

    Article  CAS  Google Scholar 

  12. Tao F, Zhao YQ, Zhang GQ, Li HL (2007) Electrochem Commun 9:1282–1287

    Article  CAS  Google Scholar 

  13. Ghosh D, Das CK (2015) ACS Appl Mater Inter 7:1122–1131

    Article  CAS  Google Scholar 

  14. Hua H, Liu SJ, Chen ZY, Bao RQ, Shi YY, Hou LR, Pang G, Hui KN, Zhang XG, Yuan CZ (2016) Sci Rep-UK 6:20973

    Article  CAS  Google Scholar 

  15. Liu B, Kong DZ, Zhang J, Wang Y, Chen TP, Cheng CW, Yang HY (2016) J Mater Chem A 4:3287–3296

    Article  CAS  Google Scholar 

  16. Xu B, Pan L, Zhu QY (2016) J Mater Eng Perform 25:1117–1121

    Article  CAS  Google Scholar 

  17. Chen Q, Li HG, Cai CY, Yang S, Huang K, Wei XL, Zhong JX (2013) RSC Adv 3:22922–22926

    Article  CAS  Google Scholar 

  18. Wang QH, Jiao LF, Du HM, Si YC, Wang YJ, Yuan HT (2012) J Mater Chem 22:21387–23191

    Article  CAS  Google Scholar 

  19. Chao DL, Xia XH, Liu JL, Fan ZX, Ng CF, Lin JY, Zhang H, Shen ZX, Fan HJ (2014) Adv Mater 26:5794–5800

    Article  CAS  Google Scholar 

  20. Hu ZM, Xiao X, Chen C, Li TQ, Huang L, Zhang CF, Su J, Miao L, Jiang JJ, Zhang YR, Zhou J (2015) Nano Energy 11:226–234

    Article  CAS  Google Scholar 

  21. Zhang X, Zhao YQ, Xu CL (2014) Nanoscale 6:3638–3646

    Article  CAS  Google Scholar 

  22. Zhao J, Zou YC, Zou XX, Bai TY, Liu YP, Gao RQ, Wang DJ, Li GD (2014) Nanoscale 6:7255–7262

    Article  CAS  Google Scholar 

  23. Ning FY, Shao MF, Zhang CL, Xu SM, Wei M, Duan X (2014) Nano Energy 7:134–142

    Article  CAS  Google Scholar 

  24. Abouali S, Garakani MA, Zhang B, Xu ZL, Heidari EK, Huang JQ, Huang J, Kim JK (2015) ACS Appl Mater Inter 7:13503–13511

    Article  CAS  Google Scholar 

  25. Wang J, Gao B, Long ZB (2014) Li Rui, Shen JP, Qiaoa ZQ, Yang GH, Nie FD. RSC Adv 4:30573–30578

    Article  CAS  Google Scholar 

  26. Xiao YL, Lei Y, Zheng BZ, Gu L, Wang YY, Xiao D (2015) RSC Adv 5:21604–21613

    Article  CAS  Google Scholar 

  27. Peng Z, Jia DS, Al-Enizi AM, Elzatahry AA, Zheng G (2015) From Water oxidation to reduction: homologous Ni–Co based nanowires as complementary Water splitting Electrocatalysts. Adv. Energy Mater. DOI. doi:10.1002/aenm.201402031

    Google Scholar 

  28. Shen LF, Wang J, Xu GY, Li HS, Dou H, Zhang XG (2015) NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater DOI. doi:10.1002/aenm.201400977

    Google Scholar 

  29. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  30. Xu J, Wang QF, Wang XW, Xiang QY, Liang B, Chen D, Shen GZ (2013) ACS Nano 7:5453–5462

    Article  CAS  Google Scholar 

  31. Peng SJ, Li LL, Tan HT, Cai R, Shi WH, Li CC, Mhaisalkar SG, Srinivasan M (2014) Ramakrishna Seeram, Yan QY. Adv Funct Mater 24:2155–2162

    Article  CAS  Google Scholar 

  32. Wei C, Chuan X, Alshareef HN (2014) ACS Nano 8:9531–9541

    Article  Google Scholar 

  33. Pu J, Wang ZH, Wu KL, Yu N, Sheng E (2014) Phys Chem Chem Phys 16:785–791

    Article  CAS  Google Scholar 

  34. Luo FL, Li J, Yuan HY, Xiao D (2014) Electrochim Acta 123:183–189

    Article  CAS  Google Scholar 

  35. Xu L, Lu Y (2015) RSC Adv 5:67518–67523

    Article  CAS  Google Scholar 

  36. Zhao WW, Zhang C, Geng FY, Zhuo SF, Zhang B (2014) ACS Nano 8:10909–10919

    Article  CAS  Google Scholar 

  37. Liu Q, Zhang JY (2013) CrystEngComm 15:5087–5092

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Science Foundation of China (NNSFC no. 21503102), the Fundamental Research Funds for the Central University (lzujbky-2014-189), the Science and Technology Program of Gansu Province of China (145RJZA176), and the National College Students’ Innovative Entrepreneurial Training Program of Lanzhou University (No. 201510730096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cailing Xu.

Electronic supplementary material

ESM 1

(DOC 7067 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, B., Zhao, Y. & Xu, C. A high mass loading electrode based on ultrathin Co3S4 nanosheets for high performance supercapacitor. J Solid State Electrochem 20, 2197–2205 (2016). https://doi.org/10.1007/s10008-016-3225-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3225-4

Keywords

Navigation