Skip to main content
Log in

glyA gene knock-out in Escherichia coli enhances L-serine production without glycine addition

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In E. coli, glyA encodes for serine hydroxymethyltransferase (SHMT), which converts L-serine to glycine. When engineering L-serine-producing strains, it is therefore favorable to inactivate glyA to prevent L-serine degradation. However, most glyA knockout strains exhibit slow cell growth because of the resulting lack of glycine and C1 units. To overcome this problem, we overexpressed the gcvTHP genes of the glycine cleavage system (GCV), to increase the C1 supply before glyA was knocked out. Subsequently, the kbl and tdh genes were overexpressed to provide additional glycine via the L-threonine degradation pathway, thus restoring normal cell growth independent of glycine addition. Finally, the plasmid pPK10 was introduced to overexpress pgk, serA Δ197, serC and serB, and the resulting strain E4G2 (pPK10) accumulated 266.3 mg/L of L-serine in a semi-defined medium without adding glycine, which was 3.18-fold higher than the production achieved by the control strain E3 (pPK10). This strategy can accordingly be applied to disrupt the L-serine degradation pathway in industrial production strains without causing negative side-effects, ultimately making L-serine production more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hsiao, H. Y. and T. Wei (1986) Enzymatic production of L-serine with a feedback control system for formaldehyde addition. Biotechnol. Bioeng. 28: 1510–1518.

    Article  CAS  Google Scholar 

  2. Hagishita, T., T. Yoshida, Y. Izumi, and T. Mitsunaga (1996) Efficient l-serine production from methanol and glycine by resting cells of Methylobacterium sp. strain MN43. Biosci. Biotechnol. Biochem. 60: 1604–1607.

    Article  CAS  Google Scholar 

  3. Jiang, W., B. Xia, and Z. Liu (2013) A serine hydroxymethyltransferase from marine bacterium Shewanella algae: Isolation, purification, characterization and l-serine production. Microbiol. Res. 168: 477–484.

    Article  CAS  Google Scholar 

  4. Jiang, W., B. Xia, J. Huang, and Z. Liu (2013) Characterization of a serine hydroxymethyltransferase for L-serine enzymatic production from Pseudomonas plecoglossicida. World J. Microb. Biot. 29: 2067–2076.

    Article  CAS  Google Scholar 

  5. Peters-Wendisch, P., M. Stolz, H. Etterich, N. Kennerknecht, H. Sahm, and L. Eggeling (2005) Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl. Environ. Microbiol. 71: 7139–7144.

    Article  CAS  Google Scholar 

  6. Stolz, M., P. Peters-Wendisch, H. Etterich, T. Gerharz, R. Faurie, H. Sahm, and L. Eggeling (2007) Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum. Appl. Environ. Microbiol. 73: 750–755.

    Article  CAS  Google Scholar 

  7. Zhu, Q., X. Zhang, Y. Luo, W. Guo, G. Xu, J. Shi, and Z. Xu (2015) L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum. Appl. Microbiol. Biot. 99: 1665–1673.

    Article  CAS  Google Scholar 

  8. Gu, P., F. Yang, T. Su, F. Li, Y. Li, and Q. Qi (2014) Construction of an L-serine producing Escherichia coli via metabolic engineering. J. Ind. Microbiol. Biotechnol. 41: 1443–1450.

    Article  CAS  Google Scholar 

  9. Mundhada, H., K. Schneider, H. B. Christensen, and A. T. Nielsen (2016) Engineering of high yield production of L?serine in Escherichia coli. Biotechnol. Bioeng. 113: 807–816.

    Article  CAS  Google Scholar 

  10. Mundhada, H., J. M. Seoane, K. Schneider, A. Koza, H. B. Christensen, T. Klein, and A. T. Nielsen (2017) Increased production of L-serine in Escherichia coli through adaptive laboratory evolution. Metab. Eng. 39: 141–150.

    Article  CAS  Google Scholar 

  11. Lin, Z., Z. Xu, Y. Li, Z. Wang, T. Chen, and X. Zhao (2014) Metabolic engineering of Escherichia coli for the production of riboflavin. Microb. Cell. Fact. 13: 104.

    PubMed  PubMed Central  Google Scholar 

  12. Kuhlman, T. E. and E. C. Cox (2010) Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res. 38: e92.

    Book  Google Scholar 

  13. Zhang, Y., Z. Lin, Q. Liu, Y. Li, Z. Wang, H. Ma, and X. Zhao (2014) Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli. Microb. Cell. Fact. 13: 172.

    Article  Google Scholar 

  14. Li, Y., G. K. Chen, X. W. Tong, H. T. Zhang, X. G. Liu, Y. H. Liu, and F. P. Lu (2012) Construction of Escherichia coli strains producing L-serine from glucose. Biotechnol. Lett. 34: 1525–1530.

    Article  CAS  Google Scholar 

  15. Pizer, L. I. and M. L. Potochny (1964) Nutritional and regulatory aspects of serine metabolism in Escherichia coli. J. Bacteriol. 88: 611–619.

    Article  CAS  Google Scholar 

  16. Zhang, X. and E. Newman (2008) Deficiency in l-serine deaminase results in abnormal growth and cell division of Escherichia coli K-12. Mol. Microbiol. 69: 870–881.

    Article  CAS  Google Scholar 

  17. Plamann, M. D., W. D. Rapp, and G. V. Stauffer (1983) Escherichia coli K12 mutants defective in the glycine cleavage enzyme system. Mol. Genet. Genom. 192: 15–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Kang, P., Liu, S. et al. glyA gene knock-out in Escherichia coli enhances L-serine production without glycine addition. Biotechnol Bioproc E 22, 390–396 (2017). https://doi.org/10.1007/s12257-017-0084-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0084-5

Keywords

Navigation