Skip to main content
Log in

Construction of an l-serine producing Escherichia coli via metabolic engineering

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

l-Serine is a nonessential amino acid, but plays a crucial role as a building block for cell growth. Currently, l-serine production is mainly dependent on enzymatic or cellular conversion. In this study, we constructed a recombinant Escherichia coli that can fermentatively produce l-serine from glucose. To accumulate l-serine, sdaA encoding the l-serine dehydratase, iclR encoding the isocitrate lyase regulator, and arcA encoding the aerobic respiration control protein were deleted in turn. In batch fermentation, the engineered E. coli strain YF-5 exhibited obvious l-serine accumulation but poor cell growth. To restore cell growth, aceB encoding the malate synthase was knocked out, and the engineered strain was then transformed with plasmid that overexpressed serA FR, serB, and serC genes. The resulting strain YF-7 produced 4.5 g/L l-serine in batch cultivation and 8.34 g/L l-serine in fed-batch cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jiang W, Xia B, Liu Z (2013) A serine hydroxymethyltransferase from marine bacterium Shewanella algae: Isolation, purification, characterization and l-serine production. Microbiol Res 168(8):477–484

    Article  CAS  PubMed  Google Scholar 

  2. Lai S, Zhang Y, Liu S, Liang Y, Shang X, Chai X, Wen T (2012) Metabolic engineering and flux analysis of Corynebacterium glutamicum for l-serine production. Sci China Life Sci 55(4):283–290

    Article  CAS  PubMed  Google Scholar 

  3. Remesy C, Fafournoux P, Demigne C (1983) Control of hepatic utilization of serine, glycine and threonine in fed and starved rats. J Nutr 113(1):28–39

    CAS  PubMed  Google Scholar 

  4. Pizer LI, Potochny ML (1964) Nutritional and regulatory aspects of serine metabolism in Escherichia coli. J Bacteriol 88:611–619

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Stolz M, Peters-Wendisch P, Etterich H, Gerharz T, Faurie R, Sahm H, Fersterra H, Eggeling L (2007) Reduced folate supply as a key to enhanced l-serine production by Corynebacterium glutamicum. Appl Environ Microbiol 73(3):750–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hsiao HY, Wei T (1986) Enzymatic production of l-serine with a feedback control system for formaldehyde addition. Biotechnol Bioeng 28(10):1510–1518

    Article  CAS  PubMed  Google Scholar 

  7. Izumi Y, Yoshida T, Miyazaki SS, Mitsunaga T, Ohshiro T, Shimao M, Miyata A, Tanabe T (1993) l-serine production by a methylotroph and its related enzymes. Appl Microbiol Biotechnol 39(4–5):427–432

    Article  CAS  PubMed  Google Scholar 

  8. Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L (2005) Metabolic engineering of Corynebacterium glutamicum for l-serine production. Appl Environ Microbiol 71(11):7139–7144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gu P, Yang F, Kang J, Wang Q, Qi Q (2012) One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of l-tryptophan in Escherichia coli. Microb Cell Fact 11(1):30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lee SY, Park JH (2010) Integration of systems biology with bioprocess engineering: l-threonine production by systems metabolic engineering of Escherichia coli. Adv Biochem Eng Biotechnol 120:1–19

    CAS  PubMed  Google Scholar 

  11. Park JH, Kim TY, Lee KH, Lee SY (2011) Fed-batch culture of Escherichia coli for l-valine production based on in silico flux response analysis. Biotechnol Bioeng 108(4):934–946

    Article  CAS  PubMed  Google Scholar 

  12. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104(19):7797–7802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Li Y, Chen GK, Tong XW, Zhang HT, Liu XG, Liu YH, Lu FP (2012) Construction of Escherichia coli strains producing l-serine from glucose. Biotechnol Lett 34(8):1525–1530

    Article  CAS  PubMed  Google Scholar 

  14. Peters-Wendisch P, Netzer R, Eggeling L, Sahm H (2002) 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by l-serine. Appl Microbiol Biotechnol 60(4):437–441

    Article  CAS  PubMed  Google Scholar 

  15. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Li M, Gu P, Kang J, Wang Y, Wang Q, Qi Q (2012) Extending homologous sequence based on the single gene mutants by one-step PCR for efficient multiple gene knockouts. Folia Microbiol (Praha) 57(3):209–214

    Article  CAS  Google Scholar 

  17. Martinez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29(3):397–404

    Article  CAS  PubMed  Google Scholar 

  18. Aboulwafa M, Hvorup R, Saier MH Jr (2004) Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase. Arch Microbiol 181(1):26–34

    Article  CAS  PubMed  Google Scholar 

  19. Ikeda M (2006) Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69(6):615–626

    Article  CAS  PubMed  Google Scholar 

  20. Lorenz E, Stauffer GV (1996) MetR-mediated repression of the glyA gene in Escherichia coli. FEMS Microbiol Lett 144(2–3):229–233

    Article  CAS  PubMed  Google Scholar 

  21. Netzer R, Peters-Wendisch P, Eggeling L, Sahm H (2004) Cometabolism of a nongrowth substrate: l-serine utilization by Corynebacterium glutamicum. Appl Environ Microbiol 70(12):7148–7155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Waegeman H, Beauprez J, Moens H, Maertens J, De Mey M, Foulquié-Moreno M, Heijnen J, Charlier D, Soetaert W (2011) Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). BMC Microbiol 11(1):70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9(3):268–274

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto K, Ishihama A (2003) Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol Microbiol 47(1):183–194

    Article  CAS  PubMed  Google Scholar 

  25. Alexeeva S, Hellingwerf KJ, Teixeira de Mattos MJ (2003) Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J Bacteriol 185(1):204–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D (2004) Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci USA 101(36):13318–13323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ornston LN, Ornston MK (1969) Regulation of glyoxylate metabolism in Escherichia coli K-12. J Bacteriol 98(3):1098–1108

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Zhao G, Winkler ME (1996) A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J Bacteriol 178(1):232–239

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kang Z, Gao C, Wang Q, Liu H, Qi Q (2010) A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli. Bioresour Technol 101(19):7675–7678

    Article  CAS  PubMed  Google Scholar 

  30. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166(1):175–176

    Article  CAS  PubMed  Google Scholar 

  31. Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158(1):9–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a Grant from the National Natural Science Foundation of China (31370085), a Grant from National High-Tech Research and Development Plan of China (2012AA022104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Qi.

Additional information

P. Gu and F. Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, P., Yang, F., Su, T. et al. Construction of an l-serine producing Escherichia coli via metabolic engineering. J Ind Microbiol Biotechnol 41, 1443–1450 (2014). https://doi.org/10.1007/s10295-014-1476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1476-6

Keywords

Navigation