Skip to main content
Log in

Optimal selection of agricultural products to inhibit citrinin production during submerged culture of Monascus anka

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Agricultural products exhibit a “buffering nature” during autoclaving and fermentation processes: i.e., the final pH of agricultural product medium after Monascus fermentation maintains a certain value. The protein content of agricultural products strongly affects the buffering capacity and an extremely low final pH, below 3, can be achieved by the selection of agricultural products with low protein content, such as rice meal and cornmeal. This low pH can be used to inhibit citrinin biosynthesis during Monascus fermentation. Thus, optimal selection of agricultural products with low protein content may provide a novel strategy to inhibit citrinin production in submerged culture of Monascus anka at a low initial pH for the production of Monascus pigments. pH values ranging from 2.6 to 3 can be maintained in Monascus fermentation using cornmeal/wheat starch (30:30 g/L) as substrate at initial pH 2.5, where the concentration of intracellular pigments reaches 45 AU at 470 nm while citrinin is undetectable by TLC analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Juzlova, P., L. Martinkova, and V. Kren (1996) Secondary metabolites of the fungus Monascus: Review. J. Ind. Microbiol. 6: 163–170.

    Article  Google Scholar 

  2. Feng, Y., Y. Shao, and F. Chen (2012) Monascus pigments. Appl. Microbiol. Biotechnol. 96: 1421–1440.

    Article  CAS  Google Scholar 

  3. Blanc, P. J., J. P. Laussac, J. L. Bars, P. L. Bars, M. O. Loret, A. Pareilleux, D. Prome, J. C. Prome, A. L. Santerre, and G. Goma (1995) Characterization of monascidin A from Monascus as citrinin. Intern. J. Food Microbiol. 27: 201–213.

    Article  CAS  Google Scholar 

  4. Liao, C.-D., Y.-C. Chen, H.-Y. Lin, L.-C. Chiueh, and D. Y.-C. Shih (2014) Incidence of citrinin in red yeast rice and various commercial Monascus products in Taiwan from 2009 to 2012. Food Control. 38: 178–183.

    Article  CAS  Google Scholar 

  5. Tsukahara, M., N. Shinzato, Y. Tamaki, T. Namihira, and T. Matsui (2009) Red yeast rice fermentation by selected Monascus sp. with deep-red color, lovastatin production but no citrinin, and effect of temperature-shift cultivation on lovastatin production. Appl. Biochem. Biotechnol. 158: 476–482.

    Article  CAS  Google Scholar 

  6. Xu M.-J., Z.-L. Yang, Z.-Z. Liang, and S.-L. Zhou (2009) Construction of a Monascus purpureus mutant showing lower citrinin and higher pigment production by replacement of ctnA with pks1 without using vector and resistance gene. J. Agric. Food Chem. 57: 9764–9768.

    Article  CAS  Google Scholar 

  7. Xie, N., Q. Liu, and F. Chen (2013) Deletion of pigR gene in Monascus ruber leads to loss of pigment production. Biotechnol. Lett. 35: 1425–1432.

    Article  CAS  Google Scholar 

  8. Hajjaj, H., P. J. Blanc, E. Groussac, G. Goma, J. L. Uribelarrea, and P. Loubiere (1999) Improvement of red pigment/citrinin production ratio as a function of environmental conditions by Monascus rubber. Biotechnol. Bioeng. 64: 497–501.

    Article  CAS  Google Scholar 

  9. Pereira, D. G., A. Tonso, and B. V. Kilikian (2008) Effect of dissolved oxygen concentration on red pigments and citrinin production by Monascus purpureus ATCC 36928. Braz. J. Chem. Eng. 25: 247–253.

    Article  CAS  Google Scholar 

  10. Lee, C.-L., H.-K. Hung, J.-J. Wang, and T.-M. Pan (2007) Improving the ratio of Monacolin K to citrinin production of Monascus purpureus NTU 568 under Dioscorea medium through the mediation of pH value and ethanol addition. J. Agric. Food. Chem. 55: 6493–6502.

    Article  CAS  Google Scholar 

  11. Orozco, S. F. B. and B. V. Kilikian (2008) Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3 802. World J. Microbiol. Biotechnol. 24: 263–268.

    Article  CAS  Google Scholar 

  12. Carels, M. and D. Hepherd (1977) The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged shaken culture. Can. J. Microbiol. 23: 1360–1372.

    Article  CAS  Google Scholar 

  13. Chen, M.-H. and M. R. Johns (1993) Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl. Microbiol. Biotechnol. 40: 132–138.

    CAS  Google Scholar 

  14. Kang, B., X. Zhang, Z. Wu, H. Qi, and Z. Wang (2013) Effect of pH and nonionic surfactant on profile of intracellular and extracellular Monascus pigments. Proc. Biochem. 48: 759–767.

    Article  CAS  Google Scholar 

  15. Kang, B., X. Zhang, Z. Wu, H. Qi, Z. Wang, and S. Park (2014) Production of citrinin-free Monascus pigments by submerged culture at low pH. Enz. Microb. Technol. 55: 50–57.

    Article  CAS  Google Scholar 

  16. Ma, J., Y. Li, Q. Ye, J. Li, Y. Hua, D. Ju, D. Zhang, R. Cooper, and M. Chang (2000) Constituents of red yeast rice, a traditional Chinese food and medicine. J. Agric. Food Chem. 48: 5220-5225.

  17. Velmurugan, P., H. Hur, V. Balachandar, S. Kamala-Kannan, J.-K. Lee, S.-M. Lee, J.-C. Cha, P. J. She, and B.-T. Oh (2011) Monascus pigment production by solid-state fermentation with corn cob substrate. J. Biosci. Bioeng. 112: 590–594.

    Article  CAS  Google Scholar 

  18. Dominguez-Espinosa, R. M. and C. Webb (2003) Submerged fermentation in wheat substrates for production of Monascus pigments. World J. Microbiol. Biotechnol. 19: 329–336.

    Article  CAS  Google Scholar 

  19. Hu, Z., X. Zhang, Z. Wu, H. Qi, and Z. Wang (2012) Perstraction of intracellular pigments by submerged cultivation of Monascus in nonionic surfactant micelle aqueous solution. Appl. Microbiol. Biotechnol. 94: 81–89.

    Article  CAS  Google Scholar 

  20. Babitha, S., C. R. Soccol, and A. Pandey (2006) Jackfruit seed-a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technol. Biotechnol. 44: 645–471.

    Google Scholar 

  21. Babitha, S., C. R. Soccol, and A. Pandey (2007) Solid-state fermentation for the production of Monascus pigments from Jackfruit seed. Bioresour. Technol. 98: 1554–1560.

    Article  CAS  Google Scholar 

  22. Nimnoi, P. and S. Lumyong (2011) Improving solid-state fermentation of Monascus purpureus on agricultural products for pigment production. Food Bioproc. Technol. 4: 1384–1390.

    Article  CAS  Google Scholar 

  23. Sharmila, G., B. Nidhi, and C. Muthukumaran (2013) Sequential statistical optimization of red pigment production by Monascus purpureus (MTCC 369) using potato powder. Ind. Crops Products 44: 158–164.

    Article  CAS  Google Scholar 

  24. Martinkova, L., P. Juzlova, and D. Vesely (1995) Biological activity of polyketide pigments produced by the fungus Monascus. J. Appl. Bacteriol. 79: 606–619.

    Article  Google Scholar 

  25. Palmqvist, E. and B. Hahn-Hagerdal (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 74: 25–33.

    CAS  Google Scholar 

  26. Osmanova, N., W. Schultze, and N. Ayoub (2010) Azaphilones: A class of fungal metabolites with diverse biological activities. Phytochem. Rev. 9: 315–342.

    Article  CAS  Google Scholar 

  27. Lin, T. F., K. Yakushijin, G. H. Buchi, and A. L. Demain (1992) Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. J. Ind. Microbiol. 9: 173–179.

    Article  CAS  Google Scholar 

  28. Ritchie, R. J. (2013) The ammonia transport, retention and futile cycling problem in Cyanobacteria. Microbiol. Ecol. 65: 180–196.

    Article  CAS  Google Scholar 

  29. van Maris, A. J. A., W. N. Konings, J. P. van Dijken, and J. T. Pronk (2004) Microbial export of lactic and 3-hydroxypropanoic acid: Implications for industrial fermentation processes. Metabolic Eng. 6: 245–255.

    Article  Google Scholar 

  30. Said, F. M., J. Brooks, and Y. Chisti (2014) Optimal C: N ratio for the production of red pigments by Monascus ruber. World J. Microbiol. Biotechnol. 30 (9): 2471–2479.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenqiang Wu or Zhilong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Zhang, X., Wu, Z. et al. Optimal selection of agricultural products to inhibit citrinin production during submerged culture of Monascus anka . Biotechnol Bioproc E 19, 1005–1013 (2014). https://doi.org/10.1007/s12257-014-0419-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0419-4

Keywords

Navigation