Skip to main content
Log in

Perstraction of intracellular pigments by submerged cultivation of Monascus in nonionic surfactant micelle aqueous solution

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

“Milking processing” describes the cultivation of microalgae in a water-organic solvent two-phase system that consists of simultaneous fermentation and secretion of intracellular product. It is usually limited by the conflict between the biocompatibility of the organic solvent to the microorganisms and the ability of the organic solvent to secret intracellular product into its extracellular broth. In the present work, submerged cultivation of Monascus in the nonionic surfactant Triton X-100 micelle aqueous solution for pigment production is exploited, in which the fungus Monascus remains actively growing. Permeabilization of intracellular pigments across the cell membrane and extraction of the pigments to the nonionic surfactant micelles of its fermentation broth occur simultaneously. “Milking” the intracellular pigments in the submerged cultivation of Monascus is a perstraction process. The perstractive fermentation of intracellular pigments has the advantage of submerged cultivation by secretion of the intracellular pigments to its extracellular broth and the benefit of extractive microbial fermentation by solubilizing the pigments into nonionic surfactant micelles. It is shown as the marked increase of the extracellular pigment concentration by the submerged cultivation of Monascus in the nonionic surfactant Triton X-100 micelle solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babitha S, Soccol CR, Pandey A (2007) Effect of stress on growth, pigment production and morphology of Monascus sp. in solid cultures. J Basic Microbiol 47:118–126

    Article  CAS  Google Scholar 

  • Cull SG, Holbrey JD, Vargas-Mora V, Seddon KR, Lye GJ (2000) Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol Bioeng 69(2):227–233

    Article  CAS  Google Scholar 

  • Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19(11):457–462

    Article  CAS  Google Scholar 

  • Evanst PJ, Wang HY (1984) Pigment production from immobilized Monascus sp. utilizing polymeric resin adsorption. Appl Environ Microbiol 47(6):1323–1326

    Google Scholar 

  • Fernandes P, Prazeres DMF, Cabral JMS (2003) Membrane-assisted extractive bioconversions. Adv Biochem Eng/Biotechnol 80:115–148

    Article  CAS  Google Scholar 

  • Hajjaj H, Blanc P, Groussac E, Uribelarrea J-L, Goma G, Loubiere P (2000) Kinetic analysis of red pigment and citrinin production by Monascus ruber as a function of organic acid accumulation. Enzyme Microb Technol 27:619–625

    Article  CAS  Google Scholar 

  • Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformation in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973

    Article  CAS  Google Scholar 

  • Hejazi MA, Wijffels RH (2004) Milking of microalgae. Trends Biotechnol 22(4):189–194

    Article  CAS  Google Scholar 

  • Hejazi M, de Lamarliere C, Rocha JMS, Vermue M, Tramper J, Wijffels RH (2002) Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability. Biotechnol Bioeng 79(1):29–36

    Article  CAS  Google Scholar 

  • Hejazi MA, Holwerda E, Wijffels RH (2004) Milking microalga Dunaliella salina for β-carotene production in two-phase bioreactors. Biotechnol Bioeng 85(5):475–481

    Article  CAS  Google Scholar 

  • Hinze WL, Pramauro E (1993) A critical review of surfactant-mediated phase separations (cloud-point extraction): theory and applications. Criti Rev Anal Chem 24(2):133–177

    Article  CAS  Google Scholar 

  • Hsu F-L, Wang P-M, Lu S-Y, Wu W-T (2002) A combined solid-state and submerged cultivation integrated with adsorptive product extraction for production of Monascus red pigments. Bioprocess Biosyst Eng 25:165–168

    Article  CAS  Google Scholar 

  • Jung H, Kim C, Kim K, Shin CS (2003) Color characteristics of Monascus pigments derived by fermentation with various amino acids. J Agric Food Chem 51:1302–1306

    Article  CAS  Google Scholar 

  • Juzlova P, Martinkova L, Kren V (1996) Secondary metabolites of the fungus Monascus: review. J Ind Microbiol 16:163–170

    Article  CAS  Google Scholar 

  • Kang CD, Sim SJ (2008) Direct extraction of astaxanthin from Haematococcus culture using vegetable oils. Biotechnol Lett 30:441–444

    Article  CAS  Google Scholar 

  • Kleinegris DMM, Janssen M, Brandenburg WA, Wijffels RH (2011) Two-phase systems: potential for in situ extraction of microalgal products. Biotechnol Adv 29:502–507

    Article  CAS  Google Scholar 

  • Krairak S, Yamamura K, Irie R, Nakajima M, Shimizu H, Chim-Anage P, Yongsmith B, Shioya S (2000) Maximizing yellow pigment production in fed-batch culture of Monascus sp. J Biosci Bioeng 90(4):363–367

    CAS  Google Scholar 

  • Kumn I (1980) Alcoholic fermentation in an aqueous two-phase system. Biotechnol Bioeng 12:2393–2398

    Google Scholar 

  • Laouar L, Lowe KC, Muligan BJ (1996) Yeast responses to nonionic surfactants. Enzyme Microb Technol 18:433–438

    Article  CAS  Google Scholar 

  • Lin TF, Demain AL (1993) Resting cell studies on formation of water-soluble red pigments by Monascus sp. J Ind Microbiol 12:361–367

    Article  CAS  Google Scholar 

  • Lin TF, Demain AL (1995) Negative effect of ammonium nitrate as nitrogen source on the production of water-soluble red pigments by Monascus sp. Appl Microbial Biotechnol 43:701–705

    Article  CAS  Google Scholar 

  • Lin TF, Yakushijin K, Buchi GH, Demain AL (1992) Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. J Ind Microbiol 9:173–179

    Article  CAS  Google Scholar 

  • Lin Y-L, Wang T-H, Lee M-H, Su N-W (2008) Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biotechnol 77:965–973

    Article  CAS  Google Scholar 

  • Liu J, Ren Y, Yao S (2010) Repeated-batch cultivation of encapsulated Monascus purpureus by polyelectrolyte complex for natural pigment production. Chin J Chem Eng 18(6):1013–1017

    Article  CAS  Google Scholar 

  • Malaviya A, Gomes J (2008) Enhanced biotransformation of sitosterol to androstenedione by Mycobacterium sp. using cell wall permeabilizing antibiotics. J Ind Microbiol Biotechnol 35:1235–1239

    Article  CAS  Google Scholar 

  • Malinowski JJ (2001) Two-phase partitioning bioreactors in fermentation technology. Biotechnol Adv 19:525–538

    Article  CAS  Google Scholar 

  • Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28:300–307

    Article  CAS  Google Scholar 

  • Matsumura M, Markl H (1986) Elimination of ethanol inhibition by perstraction. Biotechnol Bioeng 28(4):534–541

    Article  CAS  Google Scholar 

  • Miozzari GF, Niederberger P, Hotter R (1978) Permeabilization of microorganisms by Triton X-100. Anal Chem 90:220–233

    CAS  Google Scholar 

  • Qureshi N, Maddox IS (2005) Reduction in butanol inhibition by perstraction: utilization of concentrated lactose/whey permeate by Clostridium acetobutylicum to enhance butanol fermentation economics. Food Bioprod Process 83(1):43–52

    Article  CAS  Google Scholar 

  • Raya SK, Sawanta SB, Joshia JB, Pangarkar VG (1997) Perstraction of phenolic compounds from aqueous solution using a nonporous membrane. Separ Sci Technol 32(6):2669–2683

    Article  Google Scholar 

  • Shin CS, Kim HJ, Kim MJ, Ju JY (1998) Morphological change and enhanced pigment production of Monascus when cocultured with Saccharomyces cerevisiae or Aspergillus oryzae. Biotechnol Bioeng 59(5):576–581

    Article  CAS  Google Scholar 

  • Straathof AJJ (2003) Auxiliary phase guidelines for microbial biotransformations of toxic substrate into toxic product. Biotechnol Prog 19:755–762

    Article  CAS  Google Scholar 

  • Wang Z, Dai Z (2010) Extractive microbial fermentation in cloud point system. Enzyme Microb Technol 46:407–418

    Article  CAS  Google Scholar 

  • Wang Z, Zhao F, Hao X, Chen D, Li D (2004) Microbial transformation of hydrophobic compound in cloud point system. J Mol Catal B 27:147–153

    Article  CAS  Google Scholar 

  • Wei G, Li Y, Du G, Chen J (2003) Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Process Biochem 38:1133–1138

    Article  CAS  Google Scholar 

  • Zhang F, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2011) Screening of biocompatible organic solvents for enhancement of lipid milking from Nannochloropsis sp. Process Biochem 46:1934–1941

    Article  CAS  Google Scholar 

  • Zhao F, Yu J (2001) l-asparaginase released from Escherichia coli cells with K2HPO4 and 2 % (w/v) Triton X-100. Biotechnol Prog 17:490–494

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support from the National Natural Science Foundation of China (No: 21076123) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenqiang Wu or Zhilong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Zhang, X., Wu, Z. et al. Perstraction of intracellular pigments by submerged cultivation of Monascus in nonionic surfactant micelle aqueous solution. Appl Microbiol Biotechnol 94, 81–89 (2012). https://doi.org/10.1007/s00253-011-3851-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3851-9

Keywords

Navigation