Skip to main content
Log in

Statistical optimization for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 from rice bran using response surface method

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The optimal conditions for production of carboxymethylcellulase (CMCase) of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 were established at a flask scale using the response surface method (RSM). The optimal conditions of rice bran, tryptone, and initial pH of the medium for cell growth extracted by Design Expert Software were 66.1 g/L, 6.2 g/L, and 7.2, respectively, whereas those for production of CMCase were 58.0 g/L, 5.0 g/L, and 7.1. The analysis of variance (ANOVA) of results from central composite design (CCD) indicated that significant factor (“probe > F” less than 0.0500) for cell growth was rice bran, whereas those for production of CMCase were rice bran and initial pH of the medium. The optimal temperatures for cell growth and the production of CMCase by E. coli JM109/DL-3 were found to be 37°C. The optimal agitation speed and aeration rate of 7 L bioreactors for cell growth were 498 rpm and 1.4 vvm, whereas those for production of CMCase were 395 rpm and 1.1 vvm. The ANOVA of results indicated that the aeration rate was more significant factor (“probe > F” less than 0.0001) than the agitation speed for cell growth and production of CMCase. The optimal inner pressure for cell growth was 0.08 MPa, whereas that for the production of CMCase was 0.06 MPa. The maximal production of CMCase by E. coli JM109/DL-3 under optimized conditions was 871.0 U/mL, which was 3.0 times higher than the initial production of CMCase before optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, M. H., Y. L. Kim, Y. R. Kim, B. W. Chun, and G. W. Choi (2011) Bioethanol production from optimized pretreatment of cassava stem. Kor. J. Chem. Eng. 28: 119–125.

    Article  CAS  Google Scholar 

  2. Blumer-Schuette, S. E., I. Kataeva, J. Westpheling, M. W. W. Adams, and R. M. Kelly (2008) Extremely thermophilic microorganisms for biomass conversion: Status and prospects. Curr. Opin. Biotechnol. 19: 210–217.

    Article  CAS  Google Scholar 

  3. Li, H. X., L, Yang, Y. J. Kim, and S. J. Kim (2011) Continuous ethanol production by the synchronous saccharification and fermentation using food wastes. Kor. J. Chem. Eng. 28: 1085–1089.

    Article  CAS  Google Scholar 

  4. Wei, G. Y., W. Gao, I. H. Jin, S. Y. Yoo, J. H. Lee, C. H. Chung, and J. W. Lee (2009) Pretreatment and saccharification of rice hulls for the production of fermentable sugars. Biotechnol. Bioproc. Eng. 14: 828–834.

    Article  CAS  Google Scholar 

  5. Sukumaran, R. K., R. R. Singhania, G. M. Mathew, and A. Pandey (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34: 421–424.

    Article  CAS  Google Scholar 

  6. Golias, H., G. J. Dumsday, G. A. Stanley, and N. B. Pamment (2000) Characteristics of cellulase preparation affecting the simultaneous saccharification and fermentation of cellulose to ethanol. Biotechnol. Lett. 26: 617–621.

    Article  Google Scholar 

  7. Howard, R. L., E. Abotsi, E. L. Jansen von Rensburg, and S. Howard (2003) Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2: 602–619.

    CAS  Google Scholar 

  8. Yu, X. B., J. H. Nam, H. S. Yun, and T. M. Koo (1998) Optimization of cellulose production in batch fermentation by Trichoderma reesei. Biotechnol. Bioproc. Eng. 3: 44–47.

    Article  Google Scholar 

  9. Takashima, S., H. Iikura, A. Nakamura, M. Hidaka, H. Masaki, and T. Uozumi (1998) Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. J. Biotechnol. 65: 163–171.

    Article  CAS  Google Scholar 

  10. Roboson, L. M. and G. H. Chambliss (1989) Cellulases of bacterial origin. Enz. Microb. Technol. 11: 626–644.

    Article  Google Scholar 

  11. Shima, S., J. Kato, Y. Igarashi, and T. Kodama (1989) Cloning and expression of a Clostridium cellobioparum cellulase gene and its excretion from Escherichia coli JM109. J. Fermen. Bioeng. 68: 75–78.

    Article  CAS  Google Scholar 

  12. Lee, Y. J., B. K. Kim, B. H. Lee, K. I. Jo, N. K. Lee, C. H. Chung, Y. C. Lee, and J. W. Lee (2008) Purification and characterization of cellulase produced by Bacillus amyloliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99: 378–386.

    Article  CAS  Google Scholar 

  13. Cho, H. H., Y. B. Kim, and E. K. Kim (2009) Optimization of culture media for Bacillus species by statistical experiment design. Kor. J. Chem. Eng. 26: 754–759.

    Article  CAS  Google Scholar 

  14. Jo, K. I., Y. J. Lee, B. K. Kim, B. H. Lee, C. H., Chung, S. W. Nam, S. K. Kim, and J. W. Lee (2008) Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioproc. Eng. 13: 182–188.

    Article  CAS  Google Scholar 

  15. Kim, K. C., S. S. Yoo, Y. A. OH, and S. J. Kim (2003) Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xlyanase. J. Microbiol. Biotechnol. 13: 1–8.

    Google Scholar 

  16. Jecu, L. (2000) Solid state fermentation of agricultural wastes for endogulcanse production. Ind. Crops Prod. 11: 1–5.

    Article  CAS  Google Scholar 

  17. Lee, S. M. and Y. M. Koo (2001) Pilot-scale production of cellulose using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbiol. Biotechnol. 11: 229–233.

    CAS  Google Scholar 

  18. Tao, S., L. Beihui, L. Zuohu, and L. Deming (1999) Effects of air pressure amplitude on productivity by Trichoderma viride SL-1 in periodic pressure solid state fermenter. Proc. Biochem. 34: 25–29.

    Article  CAS  Google Scholar 

  19. Emtiazi, G. and I. Nahvi (2000) Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass Bioenergy 19: 31–37.

    Article  Google Scholar 

  20. Kang, S. W., Y. S. Park, J. S. Lee, S. I. Hong, and S. W. Kim (2004) Production of cellulase and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol. 91: 153–156.

    Article  CAS  Google Scholar 

  21. Lee, B. H., B. K. Kim, Y. J. Lee, C. H. Chung, and J. W. Lee (2010) Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enz. Microb. Technol. 46: 38–42.

    Article  CAS  Google Scholar 

  22. Kim, B. K., B. H. Lee, Y. J. Lee, I. H. Jin, C. H. Chung, and J. W. Lee (2009) Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enz. Microb. Technol. 44: 411–416.

    Article  CAS  Google Scholar 

  23. Yi, J. C., J. C. Sandra, A. B. John, and T. C. Shu (1999) Production and distribution of endoglucanase, cellobiohydrolase, and β-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl. Environ. Microbiol. 65: 553–559.

    Google Scholar 

  24. Khuri, A. I. and J. A. Cornell (1987) Response surfaces: Design and analysis. Marcel Dekker, NY, USA.

    Google Scholar 

  25. Krishna, C. (1999) Production of bacterial cellulases by a solid state bioprocessing of banana wastes. Bioresour. Technol. 69: 231–239.

    Article  CAS  Google Scholar 

  26. Kalogeris, E., P. Christakopoulos, P. Katapodis, A. Alexious, S. Vlachou, D. Kekos, and B. J. Macris (2003) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural waste. Proc. Biochem. 38: 1099–1104.

    Article  CAS  Google Scholar 

  27. Rajoka, M. I. and K. A. Malik (1997) Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates. Bioresour. Technol. 59: 21–27.

    Article  CAS  Google Scholar 

  28. Malinowska, E., W. Krzyczkowski, G. Lapienis, and F. Herold (2009) Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: Optimization using a central composite rotatable design (CCRD). J. Ind. Microbiol. Biotechnol. 36: 1513–1527.

    Article  CAS  Google Scholar 

  29. Giavasis, I., L. M. Harvey, and B. McNeil (2006) The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of Sphingmonas paucimobilis. Enz. Microb. Technol. 38: 101–108.

    Article  CAS  Google Scholar 

  30. Elibol, M. and D. Ozer (2000) Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Proc. Biochem. 36: 325–329.

    Article  Google Scholar 

  31. Thiry, M. and D. Cinogolani (2002) Optimizing scale-up fermentation process. Trend. Biotechnol. 20: 103–105.

    Article  CAS  Google Scholar 

  32. Junker, B. H. (2004) Scale-up methodologies for Escherichia coli and yeast fermentation process. J. Biosci. Bioeng. 97: 347–364.

    CAS  Google Scholar 

  33. Seo, H. P., C. H. Chung, S. K. Kim, R. A. Gross, D. L. Kaplan, and J. W. Lee (2004) Mass production of pullulan with optimized concentrations of carbon and nitrogen sources by Aureobaisdium pullulans HP-2001 in a 100 L bioreactor with the inner pressure. J. Microbiol. Biotechnol. 14: 237–242.

    CAS  Google Scholar 

  34. Charoenrat, T., M. Ketudat-Cairns, M. Jahic, A. Veide, and S. Enfors (2006) Increased total air pressure versus oxygen limitation for enhanced oxygen transfer and product formation in a Pichia pastoris recombinant protein process. Biochem. Eng. J. 30: 205–211.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YJ., Kim, HJ., Gao, W. et al. Statistical optimization for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 from rice bran using response surface method. Biotechnol Bioproc E 17, 227–235 (2012). https://doi.org/10.1007/s12257-011-0258-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0258-5

Keywords

Navigation