Skip to main content
Log in

Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: optimization using a central composite rotatable design (CCRD)

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The aim of this study was to optimize the culture medium used for the mycelial growth and production of intracellular polysaccharides (IPS) and exopolysaccharides (EPS) in a submerged culture of Hericium erinaceum. Of the various factors examined, including carbon and nitrogen sources, vitamins, mineral elements, and initial pH, those that proved to have a significant effect were then tested using a 24 central composite rotatable design (CCRD). Under the optimal culture conditions, the maximal yield of biomass reached 14.24 ± 0.45 g l−1 and was 1.85-fold higher than in the basal medium. The kinetics of EPS biosynthesis in a bioreactor showed that although the highest yield of EPS (2.75 ± 0.27 g l−1) could be obtained on day 8, the process of biosynthesizing high molecular weight polysaccharides proceeded until the depletion of the carbon source in the medium (after 14 days of cultivation). Our results could be very helpful in the large-scale production of bioactive polysaccharides from H. erinaceum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2a–d
Fig. 3a–c
Fig. 4a–c
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen W, Zhao Z, Chen SF, Li YQ (2008) Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresour Technol 99:3187–3194. doi:10.1016/j.biortech.2007.05.049

    Article  CAS  PubMed  Google Scholar 

  2. Cho EJ, Oh JY, Chang HY, Yun JW (2006) Production of exopolysaccharides by submerged mycelial culture of a mushroom Tremella fuciformis. J Biotechnol 127:129–140. doi:10.1016/j.jbiotec.2006.06.013

    Article  CAS  PubMed  Google Scholar 

  3. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28:350–358. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  4. Elibol M (2004) Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem 39:1057–1062. doi:10.1016/S0032-9592(03)00232-2

    Article  CAS  Google Scholar 

  5. Fan L, Pan H, Soccol AT, Padney A, Soccol CR (2006) Advances in mushroom research in the last decade. Food Technol Biotechnol 44:303–311

    CAS  Google Scholar 

  6. Hsieh C, Tsai MJ, Hsu TH, Chang DM, Lo CT (2005) Medium optimization for polysaccharide production of Cordyceps sinensis. Appl Biochem Biotechnol 120:145–157. doi:10.1385/ABAB:120:2:145

    Article  CAS  PubMed  Google Scholar 

  7. Hsieh C, Tseng MH, Liu CJ (2006) Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients. Enzyme Microb Technol 38:109–117. doi:10.1016/j.enzmictec.2005.05.004

    Article  CAS  Google Scholar 

  8. Huang D, Cui F, Li Y, Zhang Z, Zhao J, Han X, Xiao X, Qian J, Wu Q, Guan G (2007) Nutritional requirements for the mycelial biomass and exopolymer production by Hericium erinaceus CZ-2. Food Technol Biotechnol 45:389–395

    CAS  Google Scholar 

  9. Joo JH, Lim JM, Kim HO, Kim SW, Hwang HJ, Choi JW, Yun JW (2004) Optimization of submerged culture conditions for exopolysaccharide production in Sarcodon aspratus (Berk.) S. Ito TG-3. World J Microbiol Biotechnol 20:767–773. doi:10.1007/s11274-004-5841-x

    Article  CAS  Google Scholar 

  10. Kim HO, Lim JM, Joo JH, Kim SW, Hwang HJ, Choi JW, Yun JW (2005) Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresour Technol 96:1175–1182. doi:10.1016/j.biortech.2004.09.021

    Article  CAS  PubMed  Google Scholar 

  11. Kumari M, Survase SA, Singhal RS (2008) Production of schizophyllan using Schizophyllum commune NRCM. Bioresour Technol 99:1036–1043. doi:10.1016/j.biortech.2007.02.029

    Article  CAS  PubMed  Google Scholar 

  12. Li J, Li P, Liu F (2008) Production of theanine by Xerocomus badius (mushroom) using submerged fermentation. LWT-Food Sci Technol 41:883–889. doi:10.1016/j.lwt.2007.05.020

    Article  CAS  Google Scholar 

  13. Lin ES, Sung SC (2006) Cultivating conditions influence exopolysaccharide production by the edible basidiomycete Antrodia cinnamomea in submerged culture. Int J Food Microbiol 108:182–187. doi:10.1016/j.ijfoodmicro.2005.11.010

    Article  CAS  PubMed  Google Scholar 

  14. Malinowska E, Krzyczkowski W, Herold F, Łapienis G, Ślusarczyk J, Suchocki P, Kuraś M, Turło J (2009) Biosynthesis of selenium-containing polysaccharides with antioxidant activity in liquid culture of Hericium erinaceum. Enzyme Microb Technol 44:334–343. doi:10.1016/j.enzmictec.2008.12.003

    Article  CAS  Google Scholar 

  15. Miller GL (1959) Use of dinitrosalycilic acid reagent for determination of reducing sugars. Anal Chem 31:426–430. doi:10.1021/ac60147a030

    Article  CAS  Google Scholar 

  16. Mizuno T (1995) Yamabushitake, Hericium erinaceus: bioactive substances and medicinal utilization. Food Rev Int 11:173–178

    Article  CAS  Google Scholar 

  17. Mizuno T, Wasa T, Ito H, Suzuki C, Ukai N (1992) Antitumor-active polysaccharides isolated from the fruiting body of Hericium erinaceum, an edible and medicinal mushroom called yamabushitake or houtou. Biosci Biotechnol Biochem 6:347–348

    Article  Google Scholar 

  18. Moradali MF, Mostafavi H, Ghods S, Hedjaroude GA (2007) Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol 7:701–724. doi:10.1016/j.intimp.2007.01.008

    Article  CAS  PubMed  Google Scholar 

  19. Ooi VEC (2008) Structure and antitumor activity relationship of polysaccharides. In: Cheung PCK (ed) Mushrooms as functional foods. Wiley, Hoboken, pp 173–198

    Google Scholar 

  20. Ooi VEC, Liu F (1999) A review of pharmacological activities of mushroom polysaccharides. Int J Med Mushrooms 1:195–206

    CAS  Google Scholar 

  21. Park YS, Lee HS, Won MH, Lee JH, Lee SY, Lee HY (2002) Effect of an exo-polysaccharide from the culture broth of Hericium erinaceus on enhancement of growth and differentiation of rat adrenal nerve cells. Cytotechnology 39:155–162. doi:10.1023/A:1023963509393

    Article  CAS  PubMed  Google Scholar 

  22. Pokhrel C, Ohga S (2007) Submerged culture conditions for mycelial yield and polysaccharides production by Lyophyllum decastes. Food Chem 105:641–646. doi:10.1016/j.foodchem.2007.04.033

    Article  CAS  Google Scholar 

  23. Reshetnikov SV, Wasser SP, Tan KK (2001) Higher Basidiomycota as a source of antitumor and immunostimulating polysaccharides (review). Int J Med Mushrooms 3:361–394

    Google Scholar 

  24. Revankar MS, Lele SS (2006) Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Biochem 41:581–588. doi:10.1016/j.procbio.2005.07.019

    Article  CAS  Google Scholar 

  25. Shih IL, Pan K, Hsieh C (2006) Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of Antrodia cinnamomea. Process Biochem 41:1129–1135. doi:10.1016/j.procbio.2005.12.005

    Article  CAS  Google Scholar 

  26. Shih IL, Tsai KL, Hsieh C (2007) Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochem Eng J 33:193–201. doi:10.1016/j.bej.2006.10.019

    Article  CAS  Google Scholar 

  27. Tang YJ, Zhong JJ (2002) Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme Microb Technol 31:20–28. doi:10.1016/S0141-0229(02)00066-2

    Article  CAS  Google Scholar 

  28. Tang YJ, Zhu LW, Li HM, Li DS (2007) Submerged culture of mushrooms in bioreactors—challenges, current state-of-the-art, and future prospects. Food Technol Biotechnol 45:221–229

    CAS  Google Scholar 

  29. Wang YX, Lu ZX (2004) Statistical optimization of media for extracellular polysaccharide by Pholiota squarrosa (Pers. ex Fr.) Quel. AS 5.245 under submerged cultivation. Biochem Eng J 20:39–47. doi:10.1016/j.bej.2004.04.004

    Article  CAS  Google Scholar 

  30. Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274. doi:10.1007/s00253-002-1076-7

    Article  CAS  PubMed  Google Scholar 

  31. Xu CP, Kim SW, Hwang HJ, Choi JW, Yun JW (2003) Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuipes C240. Process Biochem 38:1025–1030. doi:10.1016/S0032-9592(02)00224-8

    Article  CAS  Google Scholar 

  32. Yang BK, Park JB, Song CH (2003) Hypolipidemic effect of an exo-biopolymer produced from a submerged mycelial culture of Hericium erinaceus. Biosci Biotechnol Biochem 67:1292–1298. doi:10.1271/bbb.67.1292

    Article  CAS  PubMed  Google Scholar 

  33. Zaidman BZ, Yassin M, Mahajna J, Wasser SP (2005) Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol 67:453–468. doi:10.1007/s00253-004-1787-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Stewart A. Brown and Professor Alicja M. Zobel for their useful comments and for improving the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliza Malinowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malinowska, E., Krzyczkowski, W., Łapienis, G. et al. Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: optimization using a central composite rotatable design (CCRD). J Ind Microbiol Biotechnol 36, 1513–1527 (2009). https://doi.org/10.1007/s10295-009-0640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0640-x

Keywords

Navigation