Skip to main content
Log in

Aspartic acid introduce the functional amine groups on the surface of superparamagnetic Fe(OH)3@Fe3O4 nanoparticles for efficient immobilization of Penaeus vannamei protease

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, we synthesized super magnetic Fe(OH)3@Fe3O4 nanoparticles (SPIONs) by the co-precipitation method and introduction of amine groups via chemisorption of l-aspartic acid (LAA) on the surface of SPIONs. Penaeus vannamei protease (PVP) was immobilized onto amine-functionalized supermagnetic nanoparticles (ASPIONs), and conditions affecting PVP immobilization were investigated. PVP immobilized onto ASPIONs exhibited shifts in both working optimum pH and temperature with an increase from pH 7 to pH 8, and increased optimum temperature by 10 °C compared to free enzyme. Similarly, the thermal, pH, and storage stabilities of the immobilized PVP were superior to those of free form of the enzyme. In comparison to the free enzyme, the immobilized enzyme was reusable for 15 cycles while retaining 73% of its initial activity. The Michaelis–Menten kinetic constant (Km) and maximum reaction velocity (Vmax) for free PVP were 2.3 µM and 88 µM min−1, respectively, whereas Km and Vmax values of immobilized enzyme were 2.5 µM and 85 µM min−1, respectively. These results indicated that immobilized PVP was efficient in terms of catalytic activity and can be applied to continuous casein processing applications in the different industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sharifian S, Homaei A, Kim SK, Satari M (2018) Production of newfound alkaline phosphatases from marine organisms with potential functions and industrial applications. Process Biochem 64:103–115. https://doi.org/10.1016/j.procbio.2017.10.005

    Article  CAS  Google Scholar 

  2. Sharifian S, Homaei A, Hemmati R, Khajeh K (2017) Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. J Photochem Photobiol B Biol 172:115–128. https://doi.org/10.1016/j.jphotobiol.2017.05.021

    Article  CAS  Google Scholar 

  3. Ding C, Sun H, Ren J, Qu X (2017) Immobilization of enzyme on chiral polyelectrolyte surface. Anal Chim Acta 952:88–95. https://doi.org/10.1016/j.aca.2016.11.047

    Article  CAS  PubMed  Google Scholar 

  4. Homaei A, Saberi D (2015) Immobilization of α-amylase on gold nanorods: an ideal system for starch processing. Process Biochem 50:1394–1399. https://doi.org/10.1016/j.procbio.2015.06.002

    Article  CAS  Google Scholar 

  5. Homaei A, Etemadipour R (2015) Improving the activity and stability of actinidin by immobilization on gold nanorods. Int J Biol Macromol 72:1176–1181. https://doi.org/10.1016/j.ijbiomac.2014.10.029

    Article  CAS  PubMed  Google Scholar 

  6. Homaei AA, Sajedi RH, Sariri R et al (2010) Cysteine enhances activity and stability of immobilized papain. Amino Acids 38:937–942. https://doi.org/10.1007/s00726-009-0302-3

    Article  CAS  PubMed  Google Scholar 

  7. Homaei A (2015) Enhanced activity and stability of papain immobilized on CNBr-activated sepharose. Int J Biol Macromol 75:373–377. https://doi.org/10.1016/j.ijbiomac.2015.01.055

    Article  CAS  PubMed  Google Scholar 

  8. Homaei A (2015) Enzyme immobilization and its application in the food industry. In: Ravishankar, Rai (eds) Advances in food biotechnology, first. Wiley, Oxford, pp 145–164

    Chapter  Google Scholar 

  9. Mohamed SA, Al-Harbi MH, Almulaiky YQ et al (2017) Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles. Electron J Biotechnol. https://doi.org/10.1016/j.ejbt.2017.03.010

    Article  Google Scholar 

  10. Liu W, Wang L, Jiang R (2012) Specific enzyme immobilization approaches and their application with nanomaterials. Top Catal 55:1146–1156. https://doi.org/10.1007/s11244-012-9893-0

    Article  CAS  Google Scholar 

  11. Shi L, Ma F, Han Y et al (2014) Removal of sulfonamide antibiotics by oriented immobilized laccase on Fe3O4 nanoparticles with natural mediators. J Hazard Mater 279:203–211. https://doi.org/10.1016/j.jhazmat.2014.06.070

    Article  CAS  PubMed  Google Scholar 

  12. Homaei A, Lavajoo F, Sariri R (2016) Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology. Int J Biol Macromol 88:542–552. https://doi.org/10.1016/j.ijbiomac.2016.04.023

    Article  CAS  PubMed  Google Scholar 

  13. Shojaei F, Homaei A, Taherizadeh MR, Kamrani E (2017) Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannamei protease: an eco-friendly nanobiocatalyst. Int J Food Prop 20:S1413–S1423

    Google Scholar 

  14. Dadshahi Z, Homaei A, Zeinali F et al (2016) Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Litopenaeus vannamei suitable for food and detergent industries. Food Chem 202:110–115. https://doi.org/10.1016/j.foodchem.2016.01.104

    Article  CAS  PubMed  Google Scholar 

  15. Arefi M, Saberi D, Karimi M, Heydari A (2015) Superparamagnetic Fe(OH)3@Fe3O4 nanoparticles: an efficient and recoverable catalyst for tandem oxidative amidation of alcohols with amine hydrochloride salts. ACS Comb Sci 17:341–347. https://doi.org/10.1021/co5001844

    Article  CAS  PubMed  Google Scholar 

  16. Mikhaylova M, Kim DK, Berry CC et al (2004) BSA immobilization on amine functionalized superparamagnetic iron oxide nanoparticles. Chem Mater 16:2344–2354

    Article  CAS  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  18. Homaei A, Barkheh H, Sariri R, Stevanato R (2014) Immobilized papain on gold nanorods as heterogeneous biocatalysts. Amino Acids 46:1649–1657. https://doi.org/10.1007/s00726-014-1724-0

    Article  CAS  PubMed  Google Scholar 

  19. Homaei A, Samari F (2017) Investigation of activity and stability of papain by adsorption on multi-wall carbon nanotubes. Int J Biol Macromol 105:1630–1635. https://doi.org/10.1016/j.ijbiomac.2017.02.038

    Article  CAS  PubMed  Google Scholar 

  20. Homaei A (2017) Immobilization of Penaeus merguiensis alkaline phosphatase on gold nanorods for heavy metal detection. Ecotoxicol Environ Saf 136:1–7. https://doi.org/10.1016/j.ecoenv.2016.10.023

    Article  CAS  PubMed  Google Scholar 

  21. Fortes CCS, Daniel-da-Silva AL, Xavier AMRB., Tavares APM (2017) Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions. Chem Eng Process Process Intensif. https://doi.org/10.1016/j.cep.2017.03.009

    Article  Google Scholar 

  22. Al-Dhrub AHA, Sahin S, Ozmen I et al (2017) Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles. Process Biochem. https://doi.org/10.1016/j.procbio.2017.03.025

    Article  Google Scholar 

  23. Das A, Singh J, Yogalakshmi KN (2017) International biodeterioration and biodegradation laccase immobilized magnetic iron nanoparticles: fabrication and its performance evaluation in chlorpyrifos degradation. Int Biodeterior Biodegrad 117:183–189. https://doi.org/10.1016/j.ibiod.2017.01.007

    Article  CAS  Google Scholar 

  24. Wanjari S, Prabhu C, Yadav R et al (2011) Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction. Process Biochem 46:1010–1018. https://doi.org/10.1016/j.procbio.2011.01.023

    Article  CAS  Google Scholar 

  25. Arrhenius S (1889) Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226

    Google Scholar 

  26. Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6:185–205. https://doi.org/10.1007/s12154-013-0102-9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brena B, González-Pombo P, Batista-Viera F (2013) Immobilization of enzymes: a literature survey. Immobil Enzym Cells 1051:15–31. https://doi.org/10.1007/978-1-62703-550-7_2

    Article  CAS  Google Scholar 

  28. Kim BJ, Kang BK, Bahk YY et al (2009) Immobilization of horseradish peroxidase on multi-walled carbon nanotubes and its enzymatic stability. Curr Appl Phys 9:e263–e265. https://doi.org/10.1016/j.cap.2009.06.050

    Article  Google Scholar 

  29. Chen C, Xie Q, Yang D et al (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3:4473. https://doi.org/10.1039/c2ra22351a

    Article  CAS  Google Scholar 

  30. Tischer W, Kasche V (1999) Immobilized enzymes: crystals or carriers? 17:326–335

  31. Copeland RA (2000) Enzymes: a practical introduction to structure, mechanism, and data analysis. Wiley, Oxford

    Book  Google Scholar 

  32. Palmer T (1995) Understanding enzymes. Prentice Hall/Ellis Horwood, Upper Saddle River

    Google Scholar 

  33. Jafary F, Panjehpour M, Varshosaz J, Yaghmaei P (2016) Stability improvement of immobilized alkaline phosphate using chitosan nanoparticles. Braz J Chem Eng 33:243–250. https://doi.org/10.1590/0104-6632.20160332s20140074

    Article  CAS  Google Scholar 

  34. Samani NB, Nayeri H, Amiri G (2016) Effects of cadmium chloride as inhibitor on stability and kinetics of immobilized Lactoperoxidase (LPO) on silica-coated magnetite nanoparticles versus free LPO. 3:pp 230–239

  35. Patel SKS, Otari SV, Chan Kang Y, Lee J-K (2017) Protein–inorganic hybrid system for efficient his-tagged enzymes immobilization and its application in l-xylulose production. RSC Adv 7:3488–3494. https://doi.org/10.1039/C6RA24404A

    Article  Google Scholar 

  36. Contesini FJ, Figueira J, de A, Kawaguti HY, et al (2013) Potential applications of carbohydrases immobilization in the food industry. Int J Mol Sci 14:1335–1369. https://doi.org/10.3390/ijms14011335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the University of Hormozgan for the financial support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Homaei.

Ethics declarations

Conflict of interest

This work is free from any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moslemi, M., Homaei, A. & Toiserkani, H. Aspartic acid introduce the functional amine groups on the surface of superparamagnetic Fe(OH)3@Fe3O4 nanoparticles for efficient immobilization of Penaeus vannamei protease. Bioprocess Biosyst Eng 41, 749–756 (2018). https://doi.org/10.1007/s00449-018-1908-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1908-1

Keywords

Navigation