Skip to main content
Log in

Fabrication and characteristic studies of doped metal oxide-silane magnetic nanocomposite for enhancement of stability of α-amylase

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ubiquitous nanomaterials have been extensively involved in multifarious biotransformation of diverse organic and synthetic techniques. This research study describes the robust immobilization of α-amylase on magnetic nanoparticles of magnesium ferrite (MgFO) functionalized with silane. The XRD patterns, FESEM and HRTEM images were analysed to study structural and morphological features. The crystallite size of MgFO is found to be 12 nm. The FTIR results confirmed the covalent attachment of the enzyme with the MgFO and VSM and Mössbauer spectrometric graphs were evaluated to study the magnetic behaviour of the prepared samples. The Kinetic parameters, reusability, storage capacity and catalytic activity of the enzyme at various reaction time, pH and temperature conditions before and after attachment with MgFO were examined to confirm the successful immobilization process. The reusability of the enzyme on modified MgFO is found to be good (> 50%) even after 12 consecutive usability cycles and also retain 50% catalytic efficiency over 30 days storage period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Atiroğlu, A. Atiroğlu, M. Özacar, Immobilization of α-amylase enzyme on a protein @metal–organic framework nanocomposite: a new strategy to develop the reusability and stability of the enzyme. Food Chem. 349(September), 2021 (2020). https://doi.org/10.1016/j.foodchem.2021.129127

    Article  Google Scholar 

  2. A. Basso, S. Serban. Industrial applications of immobilized enzymes—a review. Mol. Catal. 479, 110607 (2019). https://doi.org/10.1016/j.mcat.2019.110607

  3. U. Hanefeld, L. Gardossi, E. Magner, Understanding enzyme immobilisation. Chem. Soc. Rev. 38(2), 453–468 (2009). https://doi.org/10.1039/b711564b

    Article  Google Scholar 

  4. S. Santos, J. Puna, J. Gomes. A review on bio-based catalysts (immobilized enzymes) used for biodiesel production. Energies 13(11). https://doi.org/10.3390/en13113013

  5. R. A. Wahab, N. Elias, F. Abdullah, S. K. Ghoshal. On the taught new tricks of enzymes immobilization: an all-inclusive overview. React. Funct. Polym. 152, 104613 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104613.

  6. C. Bernal, K. Rodríguez, R. Martínez, Integrating enzyme immobilization and protein engineering: An alternative path for the development of novel and improved industrial biocatalysts. Biotechnol. Adv. 36(5), 1470–1480 (2018). https://doi.org/10.1016/j.biotechadv.2018.06.002

    Article  Google Scholar 

  7. H.M. Salvi, G.D. Yadav, Process intensification using immobilized enzymes for the development of white biotechnology. Catal. Sci. Technol. 11(6), 1994–2020 (2021). https://doi.org/10.1039/d1cy00020a

    Article  Google Scholar 

  8. M. Bilal, Y. Zhao, S. Noreen, S.Z.H. Shah, R.N. Bharagava, H.M.N. Iqbal, Modifying bio-catalytic properties of enzymes for efficient biocatalysis: A review from immobilization strategies viewpoint. Biocatal. Biotransf. 37(3), 159–182 (2019). https://doi.org/10.1080/10242422.2018.1564744

    Article  Google Scholar 

  9. M. Razzaghi et al. Industrial applications of immobilized nano-biocatalysts. Bioprocess Biosyst. Eng. 0123456789 (2021). https://doi.org/10.1007/s00449-021-02647-y.

  10. A. Sharma, A. Kumar, K.R. Meena, S. Rana, M. Singh, S.S. Kanwar, Fabrication and functionalization of magnesium nanoparticle for lipase immobilization in n-propyl gallate synthesis. J. King Saud Univ. Sci. 29(4), 536–546 (2017). https://doi.org/10.1016/j.jksus.2017.08.005

    Article  Google Scholar 

  11. M. Bilal, Y. Zhao, T. Rasheed, H.M.N. Iqbal, Magnetic nanoparticles as versatile carriers for enzymes immobilization: a review. Int. J. Biol. Macromol. 120, 2530–2544 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.025

    Article  Google Scholar 

  12. B.I. Kharisov, H.V.R. Dias, O.V. Kharissova, Mini-review: ferrite nanoparticles in the catalysis. Arab. J. Chem. 12(7), 1234–1246 (2019). https://doi.org/10.1016/j.arabjc.2014.10.049

    Article  Google Scholar 

  13. M. Amiri, K. Eskandari, M. Salavati-Niasari, Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv. Colloid Interface Sci. 271, 101982 (2019). https://doi.org/10.1016/j.cis.2019.07.003

    Article  Google Scholar 

  14. Ł Klapiszewski, J. Zdarta, T. Jesionowski, Titania/lignin hybrid materials as a novel support for α-amylase immobilization: a comprehensive study. Colloids Surf. B Biointerfaces 162, 90–97 (2018). https://doi.org/10.1016/j.colsurfb.2017.11.045

    Article  Google Scholar 

  15. K. Hisamatsu et al., α-Amylase immobilization capacities of mesoporous silicas with different morphologies and surface properties. J. Porous Mater. 19(1), 95–102 (2012). https://doi.org/10.1007/s10934-011-9452-2

    Article  Google Scholar 

  16. R. Das, M. Talat, O.N. Srivastava, A.M. Kayastha, Covalent immobilization of peanut β-amylase for producing industrial nano-biocatalysts: a comparative study of kinetics, stability and reusability of the immobilized enzyme. Food Chem. 245, 488–499 (2018). https://doi.org/10.1016/j.foodchem.2017.10.092

    Article  Google Scholar 

  17. P.C. Ashly, M.J. Joseph, P.V. Mohanan, Activity of diastase α-amylase immobilized on polyanilines (PANIs). Food Chem. 127(4), 1808–1813 (2011). https://doi.org/10.1016/j.foodchem.2011.02.068

    Article  Google Scholar 

  18. K. Singh, G. Srivastava, M. Talat, O.N. Srivastava, A.M. Kayastha, α-Amylase immobilization onto functionalized graphene nanosheets as scaffolds: its characterization, kinetics and potential applications in starch based industries. Biochem. Biophys. Rep. 3, 18–25 (2015). https://doi.org/10.1016/j.bbrep.2015.07.002

    Article  Google Scholar 

  19. M. Dhiman, S. Rana, M. Singh, J.K. Sharma, Magnetic studies of mixed Mg–Mn ferrite suitable for biomedical applications. Integr. Ferroelectr. 202(1), 29–38 (2019). https://doi.org/10.1080/10584587.2019.1674821

    Article  Google Scholar 

  20. Z. Emami Bistgani, S. A. Siadat, A. Bakhshandeh, A. Ghasemi Pirbalouti, M. Hashemi, Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop J. 5(5), 407–415 (2017). https://doi.org/10.1016/j.cj.2017.04.003.

  21. P. Bernfeld, Amylases, alpha and beta. Methods Enzymol. I I(540), 149–158 (1955)

    Article  Google Scholar 

  22. H. Lineweaver, D. Burk, The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56(3), 658–666 (1934). https://doi.org/10.1021/ja01318a036

    Article  Google Scholar 

  23. M. Soleimani, A. Khani, K. Najafzadeh, α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J. Mol. Catal. B Enzym. 74(1–2), 1–5 (2012). https://doi.org/10.1016/j.molcatb.2011.07.011

    Article  Google Scholar 

  24. M. Defaei, A. Taheri-Kafrani, M. Miroliaei, P. Yaghmaei, Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: A robust nanobiocatalyst. Int. J. Biol. Macromol. 113(2017), 354–360 (2018). https://doi.org/10.1016/j.ijbiomac.2018.02.147

    Article  Google Scholar 

  25. S. Rana, A. Sharma, A. Kumar, S.S. Kanwar, M. Singh, Utility of silane-modified magnesium-based magnetic nanoparticles for efficient immobilization of bacillus thermoamylovorans lipase. Appl. Biochem. Biotechnol. 192(3), 1029–1043 (2020). https://doi.org/10.1007/s12010-020-03379-7

    Article  Google Scholar 

  26. A. N. Ananth, A. N. Ananth, S. P. Jose, S. Umapathy, T. Mathavan. Influence of α-amylase template concentration on systematic entrapment of highly stable and monodispersed colloidal gold nanoparticles. AIP Adv. 6(1) (2016). https://doi.org/10.1063/1.4939849.

  27. M. V. Nikolic, M. D. Lukovic. Influence of SnO2 content on the humidity dependent impedance of the MgFe2O4-Fe2O3-SnO2 compound. Chemosensors 8(2). https://doi.org/10.3390/CHEMOSENSORS8020039.

  28. M. Defaei, A. Taheri-Kafrani, M. Miroliaei, P. Yaghmaei, Alpha-amylase immobilized on polycaprolactone-grafted magnetic nanoparticles: improving stability and reusability. J. Chem. Technol. Biotechnol. 95(8), 2243–2250 (2020). https://doi.org/10.1002/jctb.6412

    Article  Google Scholar 

  29. Z.M. Milani, R. Jalal, E.K. Goharshadi, Carbodiimide for covalent α-amylase immobilization onto magnetic nanoparticles. Int. J. Nanosci. 16(5–6), 1–8 (2017). https://doi.org/10.1142/S0219581X17500156

    Article  Google Scholar 

  30. M. Talebi, S. Vaezifar, F. Jafary, M. Fazilati, S. Motamedi, Stability improvement of immobilized α-amylase using nano pore zeolite. Iran. J. Biotechnol. 14(1), 33–38 (2016). https://doi.org/10.15171/ijb.1261

    Article  Google Scholar 

  31. A. Sharma, T. Sharma, K.R. Meena, A. Kumar, S.S. Kanwar, High throughput synthesis of ethyl pyruvate by employing superparamagnetic iron nanoparticles-bound esterase. Process Biochem. 71(April), 109–117 (2018). https://doi.org/10.1016/j.procbio.2018.05.004

    Article  Google Scholar 

  32. N. Antony, S. Balachandran, P.V. Mohanan, Immobilization of diastase α-amylase on nano zinc oxide. Food Chem. 211, 624–630 (2016). https://doi.org/10.1016/j.foodchem.2016.05.049

    Article  Google Scholar 

  33. F. Eslamipour, P. Hejazi, Evaluating effective factors on the activity and loading of immobilized α-amylase onto magnetic nanoparticles using a response surface-desirability approach. RSC Adv. 6(24), 20187–20197 (2016). https://doi.org/10.1039/c5ra26140f

    Article  ADS  Google Scholar 

  34. K. Salem et al., Enzyme storage and recycling: Nanoassemblies of α-amylase and xylanase immobilized on biomimetic magnetic nanoparticles. ACS Sustain. Chem. Eng. 9(11), 4054–4063 (2021). https://doi.org/10.1021/acssuschemeng.0c08300

    Article  Google Scholar 

Download references

Funding

No funding was provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Rana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S., Sharma, A., Batoo, K.M. et al. Fabrication and characteristic studies of doped metal oxide-silane magnetic nanocomposite for enhancement of stability of α-amylase. Appl. Phys. A 128, 729 (2022). https://doi.org/10.1007/s00339-022-05882-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05882-6

Keywords

Navigation