Skip to main content
Log in

Production of agarase from a novel Micrococcus sp. GNUM-08124 strain isolated from the East Sea of Korea

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The agar degrading bacterial strain GNUM-08124 was isolated from Enteromorpha compressa collected in the East Sea of Korea by using a selective artificial sea water (ASW) agar plate containing agar as the sole carbon source. GNUM-08124 grows to produce a circular, smooth, yellow-colored, and raised colony. Its ability to hydrolyze agar was confirmed by staining the ASW agar plate with Lugol’s solution. In liquid culture, the cell density (A600) increased exponentially and reached a maximum level on the third day of cultivation. The specific agarase activity also increased in proportion to the cell density and reached maximum agarolytic activity on the third day. The 16S rRNA sequence of GNUM-08124 showed a close relationship to Micrococcus luteus (99.65%) and Micrococcus endophyticus (99.15%), which led us to assign it to the genus Micrococcus. Physiological studies indicated that optimal growth conditions were between 30 and 40°C, pH 4 and 7, using media containing between 5 and 10% NaCl (w/v), respectively. The GNUM-08124 strain was a grampositive, urease-positive, and catalase-positive bacterium. It could not hydrolyze gelatin, cellulose, xylan, or starch, but fermented a broader range of substrates, including Dglucose, D-galactose, D-fructose, D-lactose, D-trehalose, D-mannitol, D-melibiose, D-raffinose, D-xylose, methyl-α-D-glucopyranoside, N-acetyl-glucosamine, and xylitol, than those fermented by M. luteus or M. endophyticus, suggesting GNUM-08124 is a novel agar hydrolyzing microorganism belonging to Genus Micrococcus. Micrococcus sp. GNUM-08124 showed the highest agarase activity when it was cultured in ASW-YP medium supplemented with 0.4% glucose, but demonstrated lower activity in rich media (LB or TSB), in spite of superior cell growth, implying that agarase production is tightly regulated in an agar-dependent manner and repressed in rich conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao, T. F. and S. M. Kim (2010) Agarase: Review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs 8: 200–218.

    Article  Google Scholar 

  2. Duckworth, M. and W. Yaphe (1971) Structure of agar. I. Fractionation of a complex mixture of polysaccharides. Carbohydr. Res. 16: 189–197.

    Article  CAS  Google Scholar 

  3. Araki, C. H. (1966) Some recent studies on the polysaccharides of agarophytes. pp. 3–17. In: Young E. G. and J. L. Maclachan (eds.). Proceedings of the International Seaweed Symposium 5. Pergamon Press, London.

    Google Scholar 

  4. Araki, C. H. (1937) Acetylation of agar like substance of Gelidium amansii. J. Chem. Soc. 58: 1338–1350.

    CAS  Google Scholar 

  5. Potin, P., C. Richard, C. Rochas, and B. Kloareg (1993) Purification and characterization of the alpha-agarase from Alteromonas agarlyticus (Cataldi) comb. Nov., strain GJ1B. Eur. J. Biochem. 214: 599–607.

    Article  CAS  Google Scholar 

  6. Duckworth, M. and J. R. Turvey (1969) An extracellular agarase from a Cytophaga species. Biochem. J. 113:139–142.

    CAS  Google Scholar 

  7. Van der Meulen, H. J. and W. Harder (1975) Production and characterization of the agarase of Cytophaga flevensis. Antonie. Van. Leeuwenhoek 41: 431–447.

    Article  Google Scholar 

  8. Groleau, D. and W. Yaphe (1977) Enzymatic hydrolysis of agar: Purification and characterization of beta-neoagarotetraose hydrolase from Pseudomonas atlantica. Can. J. Microbiol. 23: 672–679.

    Article  CAS  Google Scholar 

  9. Malmqvist, M. (1978) Purification and characterization of two different agarose degrading enzymes. Biochem. Biophys. Acta 537: 31–43.

    CAS  Google Scholar 

  10. Morrice, L. M., M. W. McLean, F. B. Williamson, and W. F. Long (1983) Beta-agarases I and II from Pseudomonas atlantica. Purifications and some properties. Eur. J. Biochem. 135: 553–558.

    Article  CAS  Google Scholar 

  11. Hamer, G. K., S. S. Bhattacharjee, and W. Yaphe (1977) Analysis of the enzymatic hydrolysis products of agarose by 13C-NMR spectroscopy. Carbohydr. Res. 54: 7–10.

    Article  Google Scholar 

  12. Leon, O., L. Quintana, G. Peruzzo, and J. C. Slebe (1992) Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl. Environ. Microbiol. 58: 4060–4063.

    CAS  Google Scholar 

  13. Wang, J. X., H. N. Mou, X. L. Jiang, and H. S. Guan (2006) Characterization of a novel β-agarase from marine Alteromonas sp. SY37-12 and its degrading products. Appl. Microbiol. Biotechnol. 71:833–839.

    Article  CAS  Google Scholar 

  14. Vera, J., R. Alvarez, E. Murano, J. C. Slebe, O. Jand, and O. Leo (1998) Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Appl. Envrion. Microbiol. 64: 4378–4383.

    CAS  Google Scholar 

  15. Buttner, M., I. M. Fearnley, and M. J. Bibb (1987) The agarase gene (dagA) of Streptomyces coelicolor A3(2): Nucleotide sequence and transcriptional analysis. Mol. Gen. Genet. 209: 101–109.

    Article  CAS  Google Scholar 

  16. Fu, W., B. Han, D. Duan, W. Liu, and C. Wang (2008) Purification and characterization of agarases from a marine bacterium Vibrio sp. F-6. J. Ind. Microbiol. Biotechnol. 35: 915–922.

    Article  CAS  Google Scholar 

  17. Araki, T., M. Hayakawa, L. Zhang, S. Karita, and T. Morishita (1998) Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J. Mar. Biotechnol. 6: 260–265.

    Google Scholar 

  18. Sugano, Y., I. Terada, M. Arita, and M. Noma (1993) Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl. Envrion. Microbiol. 59: 1549–1554.

    CAS  Google Scholar 

  19. Hu, Z., B. -K. Lin, Y. Xu, M. Q. Zhong, and G. -M. Liu (2008) Production and purification of agarase from a marine agarolytic bacterium Agarivorans sp. HZ105. J. Appl. Microbiol. 106: 181–190.

    Article  Google Scholar 

  20. Kim H. T., S. Lee, D. Lee, H. -S. Kim, W. -G. Bang, K. H. Kim, and I.-G. Choi (2010) Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2–40: An exo-type β-agarase producing neoagarobiose. Appl. Microbiol. Biotechnol. 86: 227–234.

    Article  CAS  Google Scholar 

  21. Naganuma, T., D. A. Coury, M. Poline-Fuller, A. Gibor, and K. Horikoshi (1993) Characterization of agarolytic Microscilla isolates and their extracellular agarases. Syst. Appl. Microbiol. 16: 183–190

    Article  CAS  Google Scholar 

  22. Zhong, Z., A. Toukdarian, D. Helinski, V. Knauf, S. Sykes, J. E. Wilkinson, C. O’Bryne, T. Shea, C. DeLoughery, and R. Caspi (2001) Sequence analysis of a 101-kilobase plasmid required for agar degradation by a Microscilla isolate. Appl. Environ. Microbiol. 67: 5771–5779.

    Article  CAS  Google Scholar 

  23. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  24. Hall, T. A. (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98.

    CAS  Google Scholar 

  25. Yoon, J. H., S. T. Lee, and Y. H. Park (1996) Inter-and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48: 187–194.

    Article  Google Scholar 

  26. Moaledj, K. (1986) Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: Their application to numerical taxonomy. J. Microbiol. Methods 5: 303–310.

    Article  CAS  Google Scholar 

  27. Zhao, G. -Z., J. Li, S. Qin, Y. -Q. Zhang, W. -Y. Zhu, C. -L. Jiang, L. -H. Xu, and W. -J. Li (2009) Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. Int. J. Syst. Evol. Microbiol. 59: 2383–2387.

    Article  CAS  Google Scholar 

  28. Servin-Gonzalez, L., M. R. Jensen, J. White, and M. Bibb (1994) Transcriptional regulation of the four promoters of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Microbiol. 140: 2555–2565.

    Article  CAS  Google Scholar 

  29. Lakshmikanth, M., S. Manohar, J. Patnakar, P. Vaishampayan, Y. Shouche, and J. Lalitha (2006) Optimization of culture conditions for the production of extracellular agarases from newly isolated Pseudomonas aeruginosa AG LSL-11. World J. Microbiol. Biotechnol. 22: 531–537.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Kwang Hong.

Additional information

These three authors contributed equally for this manuscript as the first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H.J., Hong, J.B., Park, J.J. et al. Production of agarase from a novel Micrococcus sp. GNUM-08124 strain isolated from the East Sea of Korea. Biotechnol Bioproc E 16, 81–88 (2011). https://doi.org/10.1007/s12257-010-0271-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0271-0

Keywords

Navigation