Skip to main content
Log in

Characterization of Two Thermostable β-agarases from a Newly Isolated Marine Agarolytic Bacterium, Vibrio sp. S1

  • Research Paper
  • Protein Engineering and Enzyme Technology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

An agar-degrading bacterium, strain S1, was isolated from the coastal seawater of Jeju Island, Korea, and identified as a novel species of the genus Vibrio. The isolate, Vibrio sp. S1, produced at least five kinds of extracellular agarases in artificial sea water broth containing yeast extract and bacto peptone, and two of them were purified to homogeneity. Both agarases, AgaA33 and AgaA29, with apparent molecular weights of 33 kDa and 29 kDa, respectively, exhibited an optimum temperature and pH of 45°C and 7.0, respectively. AgaA33 and AgaA29 showed acidophilic properties and maintained 93% and 87% of the maximum agarase activity at 50°C, respectively, displaying their thermostability. Moreover, more than 80% activity was retained after heat treatment at 45°C for 1 h. Their agarase activities were inhibited by the presence of EDTA and remarkably stimulated by the presence of Mn2+ in a concentration-dependent manner, indicating that both agarases required the Mn2+ ion as a cofactor. The AgaA33 enzyme exhibited Km and Vmax values of 4.02 mg/mL and 27 U/mg, respectively. AgaA29 exhibited Km and Vmax values of 3.26 mg/mL and 200 U/mg, respectively. The instrumental analysis demonstrated that both are new β-agarases that can hydrolyze agarose and agaro-oligomers into neoagarotetraose and neoagarohexaose. In addition, AgaA33 coproduced neoagarooctaose as the major final product. Both thermostable enzymes are expected to be useful for the industrial application of agar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rhein-Knudsen, N., M. T. Ale, and A. S. Meyer (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar. Drugs. 13: 3340–3359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chi, W. J., Y. K. Chang, and S. K. Hong (2012) Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917–930.

    Article  CAS  PubMed  Google Scholar 

  3. Usov, A. I. (2011) Polysaccharides of the red algae. Adv. Carbohydr. Chem. Biochem. 65: 115–217.

    Article  CAS  PubMed  Google Scholar 

  4. Nussinovitch, A. (1997) Hydrocolloid Applications: Gum technology in the food and other industries. pp. 1–18. Springer, New York, NY, USA.

    Book  Google Scholar 

  5. Brinker, C. J. and G. W. Scherer (2013) Sol-gel science: the physics and chemistry of sol-gel processing. pp. 2–10. Sol-gel processing. Academic Press, Cambridge, MA, USA.

    Google Scholar 

  6. Kim, J. H., E. J. Yun, N. Seo, S. Yu, D. H. Kim, K. M. Cho, H. J. An, J. H. Kim, I. G. Choi, and K. H. Kim (2017) Enzymatic liquefaction of agarose above the sol-gel transition temperature using a thermostable endo-type β-agarase, Aga16B. Appl. Microbiol. Biotechnol. 101: 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  7. Kim, H. T., S. Lee, K. H. Kim, and I. G. Choi (2012) The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour. Technol. 107: 301–306.

    Article  CAS  PubMed  Google Scholar 

  8. Kim, D. H., E. J. Yun, S. H. Lee, and K. H. Kim (2018) Novel two-step process utilizing a single enzyme for the production of high-titer 3,6-anhydro-L-galactose from agarose derived from red macroalgae. J. Agric. Food. Chem. 66: 12249–12256.

    Article  CAS  PubMed  Google Scholar 

  9. Park, D. Y., W. J. Chi, J. S. Park, Y. K. Chang, and S. K. Hong (2015) Cloning, expression, and biochemical characterization of a GH16 β-agarase AgaH71 from Pseudoalteromonas hodoensis H7. Appl. Biochem. Biotechnol. 175: 733–747.

    Article  CAS  PubMed  Google Scholar 

  10. Baker, G. C., J. J. Smith, and D. A. Cowan (2003) Review and reanalysis of domain-specific 16S primers. J. Microbiol. Methods. 55: 541–555.

    Article  CAS  PubMed  Google Scholar 

  11. Chun, J., J. H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y. W. Lim (2007) ExTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259–2261.

    Article  CAS  PubMed  Google Scholar 

  12. Thomson, J. D., D. G. Higgins, and T. J. Gibson (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  Google Scholar 

  13. Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98.

    CAS  Google Scholar 

  14. Saitou, N. and M. Nei (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  PubMed  Google Scholar 

  15. Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    Article  CAS  PubMed  Google Scholar 

  17. Komagata, K. and K. Suzuki (1987) Lipid and cell-wall analysis in bacterial systematic. Methods Microbiol. 19: 161–207.

    Article  CAS  Google Scholar 

  18. Mesbah, M., U. Premachandran, and W. B. Whitman (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159–167.

    Article  CAS  Google Scholar 

  19. Sasser, M. (1997) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.

    Google Scholar 

  20. Lineweaver, H. and D. Burk (1934) The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658–666.

    Article  CAS  Google Scholar 

  21. Temuujin, U., W. J. Chi, S. Y. Lee, Y. K. Chang, and S. K. Hong (2011) Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. 92: 749–759.

    Article  CAS  PubMed  Google Scholar 

  22. Stackegrandt, E. and J. Ebers (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today. 33: 152–155.

    Google Scholar 

  23. Morrice, L. M., M. W. McLean, F. B. Williamson, and W. F. Long (1983) Beta agarase I and II from Pseudomonas atlantica purifications and some properties. Eur. J. Biochem. 135: 553–558.

    Article  CAS  PubMed  Google Scholar 

  24. Rochas, C., P. Potin, and B. Kloareg (1994) NMR spectroscopic investigation of agarose oligomers produced by an alpha-agarase. Carbohydr. Res. 253: 69–77.

    Article  CAS  PubMed  Google Scholar 

  25. Hong, S. J., J. H. Lee, E. J. Kim, H. J. Yang, J. S. Park, and S. K. Hong (2017) Anti-obesity and anti-diabetic effect of neoagarooligosaccharides on high-fat diet-induced obesity in mice. Mar. Drugs. 15: 90.

    Article  PubMed Central  CAS  Google Scholar 

  26. Li, J., Y. Sha, D. Seswita-Zilda, Q. Hu, and P. He (2014) Purification and characterization of thermostable agarase from Bacillus sp. BI-3, a thermophilic bacterium isolated from hot spring. J. Microbiol. Biotechnol. 24: 19–25.

    Article  CAS  PubMed  Google Scholar 

  27. Bannikova, G. E., S. A. Lopatin, V. P. Varlamov, B. B. Kuznetsov, I. V. Kozina, M. L. Miroshnichenko, N. A. Chernykh, T. P. Turova, and E. A. Bonch-Osmolovskaia. (2008) The thermophilic bacteria hydrolyzing agar: characterization of thermostable agarase. Prikl. Biokhim. Mikrobiol. 44: 404–409.

    CAS  PubMed  Google Scholar 

  28. Minegishi, H., Y. Shimane, A. Echigo, Y. Ohta, Y. Hatada, M. Kamekura, T. Maruyama, and R. Usami (2013) Thermophilic and halophilic β-agarase from a halophilic archaeon Halococcus sp. 197A. Extremophiles. 17: 931–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Di, W., W. Qu, and R. Zeng (2018) Cloning, expression, and characterization of thermal-stable and pH-stable agarase from mangrove sediments. J. Basic. Microbiol. 58: 302–309.

    Article  CAS  PubMed  Google Scholar 

  30. Chen, Z. W., H. J. Lin, W. C. Huang, S. L. Hsuan, J. H. Lin, and J. P. Wang (2018) Molecular cloning, expression, and functional characterization of the β-agarase AgaB-4 from Paenibacillus agarexedens. AMB Express. 8: 49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chi, W. J., C. R. Lee, S. Dugerjonjuu, J. S. Park, D. K. Kang, and S. K. Hong (2015) Biochemical characterization of a novel iron-dependent GH16 β-agarase, AgaH92, from an agarolytic bacterium Pseudoalteromonas sp. H9. FEMS Microbiol. Lett. 362: fnv035.

    Article  PubMed  CAS  Google Scholar 

  32. Ramos, K. R. M., K. N. G. Valdehuesa, G. M. Nisola, W. K. Lee, and W. J. Chung (2018) Identification and characterization of a thermostable endolytic β-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C. N. Biotechnol. 40: 261–267.

    Article  CAS  PubMed  Google Scholar 

  33. Yang, J. H., S. S. Cho, K. M. Kim, J. Y. Kim, E. J. Kim, E. Y. Park, J. H. Lee, and S. H. Ki (2017) Neoagarooligosaccharides enhance the level and efficiency of LDL receptor and improve cholesterol homeostasis. J. Funct. Foods. 38: 529–539.

    Article  CAS  Google Scholar 

  34. Kang, D. R., G. Y. Yoon, J. Cho, S. J. Lee, S. J. Lee, H. J. Park, T. H. Kang, H. D. Han, W. S. Park, Y. K. Yoon, Y. M. Park, and I. D. Jung (2017) Neoagarooligosaccharides prevent septic shock by modulating A20- and cyclooxygenase-2-mediated interleukin-10 secretion in a septic-shock mouse model. Biochem. Biophys. Res. Commun. 486: 998–1004.

    Article  CAS  PubMed  Google Scholar 

  35. Lee, M. H., J. H. Jang, G. Y. Yoon, S. J. Lee, M. G. Lee, T. H. Kang, H. D. Han, H. S. Kim, W. S. Choi, W. S. Park, Y. M. Park, and I. D. Jung (2017) Neoagarohexaose-mediated activation of dendritic cells via Toll-like receptor 4 leads to stimulation of natural killer cells and enhancement of antitumor immunity. BMB Rep. 50: 263–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, N., X. Mao, R. W. Li, E. Hou, Y. Wang, C. Xue, and Q. Tang (2017) Neoagarotetraose protects mice against intense exercise-induced fatigue damage by modulating gut microbial composition and function. Mol. Nutr. Food Res. 61: 1600585.

    Article  CAS  Google Scholar 

  37. Lee, J. S., S. K. Hong, C. R. Lee, S. W. Nam, S. J. Jeon, and Y. H. Kim (2019) Production of ethanol (agaro-bioethanol) from agarose by unified enzymatic saccharification and fermentation in recombinant yeast. J. Microbiol. Biotechnol. 29: 625–632.

    Article  PubMed  Google Scholar 

  38. Aoki, T., T. Araki, and M. Kitamikado (1990) Purification and characterization of a novel beta-agarase from Vibrio sp. AP-2. Eur. J. Biochem. 187: 461–465.

    Article  CAS  PubMed  Google Scholar 

  39. Sugano, Y., I. Terada, M. Arita, M. Noma, and T. Matsumoto (1993) Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. Strain JT0107. Appl. Environ. Microbiol. 59: 1549–1554.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dong, J., Y. Tamaru, and T. Araki (2007) A unique beta-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl. Microbiol. Biotechnol. 74: 1248–55.

    Article  CAS  PubMed  Google Scholar 

  41. Liao, L., X. W. Xu, X. W. Jiang, Y. Cao, N. Yi, Y. Y. Huo, Y. H. Wu, X. F. Zhu, X. Q. Zhang, and M. Wu (2011) Cloning, expression, and characterization of a new beta-agarase from Vibrio sp. strain CN41. Appl. Environ. Microbiol. 77: 7077–7079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the Advanced Biomass R and D Center (ABC) of Global Frontier Project funded by the Ministry of Science, ICT and Future Planning (NRF-2015M3A6A2065700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Kwang Hong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, WJ., Seo, J.W. & Hong, SK. Characterization of Two Thermostable β-agarases from a Newly Isolated Marine Agarolytic Bacterium, Vibrio sp. S1. Biotechnol Bioproc E 24, 799–809 (2019). https://doi.org/10.1007/s12257-019-0180-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0180-9

Keywords

Navigation