Skip to main content
Log in

Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type β-agarase producing neoagarobiose

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

β-Agarases are mostly categorized into three glycoside hydrolase (GH) families 16, 50, and 86. Recent genomic analysis of Saccharophagus degradans 2–40 revealed the presence of five agarase genes belonging to these GH families. Among the five agarases, Aga50D (a member of GH50) had neither been functionally characterized nor overexpressed. In this report, we present soluble overexpression and molecular characterization of Aga50D. Aga50D was expressed in an active form resulting in a single major product from agarose without intermediates. While known GH50 agarases have both endo-lytic and exo-lytic activities, which produce neoagarobiose as a final product through the intermediate, neoagaro-oligosaccharides, identification and analysis of the reaction product by mass spectrometry and 13C NMR showed that Aga50D had unique exo-lytic activity and was able to produce neoagarobiose directly from agarose. The optimum pH and temperature for the activity were 7.0 and 30°C, respectively. The K m and V max for agarose were 41.9 mg/ml (4.2 mM) and 17.9 U/mg, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allouch J, Jam M, Helbert W, Barbeyron T, Kloareg B, Henrissat B, Czjzek M (2003) The three-dimensional structures of two β-agarases. J Biol Chem 278:47171–47180

    Article  CAS  Google Scholar 

  • Araki C (1956) Structure of the agarose consitituent of agar-agar. Bull Chem Soc Jpn 29:543–544

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  Google Scholar 

  • de Hoffmann E, Stroobant V (2007) Mass spectrometry: principles and applications. Wiley, Chichester

    Google Scholar 

  • Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW, Weiner RM (2005) Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 55:1545–1549

    Article  CAS  Google Scholar 

  • Ekborg NA, Taylor LE, Longmire AG, Henrissat B, Weiner RM, Hutcheson SW (2006) Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2–40. Appl Environ Microbiol 72:3396–3405

    Article  CAS  Google Scholar 

  • Ensor LA, Stosz SK, Weiner RM (1999) Expression of multiple complex polysaccharide-degrading enzyme systems by marine bacterium strain 2–40. J Ind Microbiol Biotechnol 23:123–126

    Article  CAS  Google Scholar 

  • Fernandez LE, Valiente OG, Mainardi V, Bello JL, Velez H, Rosado A (1989) Isolation and characterization of an anitumor active agar-type polysaccaride of Gracilaria dominguensis. Carbohydr Res 190:77–83

    Article  CAS  Google Scholar 

  • Flament D, Barbeyron T, Jam M, Potin P, Czjzek M, Kloareg B, Michel G (2007) Alpha-agarases define a new family of glycoside hydrolases, distinct from beta-agarase families. Appl Environ Microbiol 73:4691–4694

    Article  CAS  Google Scholar 

  • Fu XT, Lin H, Kim SM (2008) Purification and characterization of a novel beta-agarase, AgaA34, from Agarivorans albus YKW-34. Appl Microbiol Biotechnol 78:265–273

    Article  CAS  Google Scholar 

  • Fu XT, Pan C-H, Lin H, Kim SM (2009) Gene cloning, expression, and characterization of a β-agarase, AgaB34, from Agarivorans albus YKW-34. J Microbiol Biotechnol 19:257–264

    Article  CAS  Google Scholar 

  • Horn SJ (2009) Seaweed biofuels: production of biogas and bioethanol from brown macroalgae. VDM Verlag, Saarbrücken

    Google Scholar 

  • Hu B, Gong Q, Wang Y, Ma Y, Li J, Yu W (2006) Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe 12:260–266

    Article  CAS  Google Scholar 

  • Jam M, Flament D, Allouch J, Potin P, Thion L, Kloareg B, Czjzek M, Helbert W, Michel G, Barbeyron T (2005) The endo-beta-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochem J 385:703–713

    Article  CAS  Google Scholar 

  • Kobayashi R, Takisada M, Suzuki T, Kirimura K, Usami S (1997) Neoagarobiose as a novel moisturizer with whitening effect. Biosci Biotechnol Biochem 61:162–163

    Article  CAS  Google Scholar 

  • Lee J, Kim S-H (2009) High-throughput T7 LIC vector for introducing C-terminal poly-histidine tags with variable lengths without extra sequences. Protein Expr Purif 63:58–61

    Article  CAS  Google Scholar 

  • Lee D-G, Park G-T, Kim NY, Lee E-J, Jang MK, Shin YG, Park G-S, Kim T-M, Lee J-H, Lee J-H, Kim S-J, Lee S-H (2006) Cloning, expression, and characterization of a glycoside hydrolase family 50 beta-agarase from a marine Agarivorans isolate. Biotechnol Lett 28:1925–1932

    Article  CAS  Google Scholar 

  • Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W (2006) Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol 71:23–33

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Morrice LM, McLean MW, Long WF, Williamson FB (1983) β-agarase I and II from Pseudomonas atlantica—substrate specificities. Eur J Biochem 137:149–154

    Article  CAS  Google Scholar 

  • Ohta Y, Hatada Y, Nogi Y, Li Z, Ito S, Horikoshi K (2004a) Cloning, expression, and characterization of a glycoside hydrolase family 86 β-agarase from a deep-sea Microbulbifer-like isolate. Appl Microbiol Biotechnol 66:266–275

    Article  CAS  Google Scholar 

  • Ohta Y, Hatada Y, Nogi Y, Miyazaki M, Li Z, Akita M, Hidaka Y, Goda S, Ito S, Horikoshi K (2004b) Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from a novel species of deep-sea Microbulbifer. Appl Microbiol Biotechnol 64:505–514

    Article  CAS  Google Scholar 

  • Ohta Y, Hatada Y, Ito S, Horikoshi K (2005) High-level expression of a neoagarobiose-producing β-agarase gene from Agarivorans sp. JAMB-AII in Bacillus subtilis and enzymic properties of the recombinant enzyme. Biotechnol Appl Biochem 41:183–191

    Article  CAS  Google Scholar 

  • Renn D (1997) Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends Biotechnol 15:9–14

    Article  CAS  Google Scholar 

  • Rochas C, Lahaye M, Yaphe W, Phan Viet MT (1986) 13C-NMR-spectrocopic investigation of agarose oligomers. Carbohydr Res 148:199–207

    Article  CAS  Google Scholar 

  • Rochas C, Potin P, Kloareg B (1994) NMR spectroscopic investigation of agarose oligomer produced by an α-agarase. Carbohydr Res 253:69–77

    Article  CAS  Google Scholar 

  • Sugano Y, Matsumoto T, Kodama H, Noma M (1993) Cloning and sequencing of agaA, a unique agarase 0107 gene from a marine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol 59:3750–3756

    CAS  Google Scholar 

  • Suzuki H, Sawai Y, Suzuki T, Kawai K (2002) Purification and characterization of an extracellular alpha-neoagarooligosaccharide hydrolase from Bacillus sp MK03. J Biosci Bioeng 93:456–463

    CAS  Google Scholar 

  • Suzuki H, Sawai Y, Suzuki T, Kawai K (2003) Purification and characterization of an extracellular beta-agarase from Bacillus sp. MK03. J Biosci Bioeng 95:328–334

    CAS  Google Scholar 

  • Wang J, Jiang X, Mou H, Guan H (2004) Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium. J Appl Phycol 16:333–340

    Article  CAS  Google Scholar 

  • Weiner RM, Taylor LE, Henrissat B, Hauser L, Land M, Coutinho PM, Rancurel C, Saunders EH, Longmire AG, Zhang H, Bayer EA, Gilbert HJ, Larimer F, Zhulin IB, Ekborg NA, Lamed R, Richardson PM, Borovok I, Hutcheson S (2008) Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2–40T. PLoS Genet 4:13

    Article  Google Scholar 

  • Zhang WW, Sun L (2007) Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Appl Environ Microbiol 73:2825–2831

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Geol Choi.

Additional information

Hee Taek Kim and Saeyoung Lee contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.T., Lee, S., Lee, D. et al. Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type β-agarase producing neoagarobiose. Appl Microbiol Biotechnol 86, 227–234 (2010). https://doi.org/10.1007/s00253-009-2256-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2256-5

Keywords

Navigation