Skip to main content
Log in

Optimization of Culture Conditions for the Production of Extracellular Agarases from Newly Isolated Pseudomonas Aeruginosa AG LSL-11

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

An agar-degrading bacterium capable of utilizing agar as sole source of carbon and energy was isolated from sea water by enrichment culture technique. The bacterium was identified as Pseudomonas aeruginosa and the culture conditions were standardized for the maximal production of extracellular agarases. The bacterium grew in the pH range 5.0–11.0, optimal between pH 7.0 and 8.0; temperature between 25 °C and 37 °C, optimal at 30 °C and sodium chloride concentration 0–8% and optimal at 2% respectively. The agarases secreted by Pseudomonas aeruginosa AG LSL-11 were inducible by agar and not by any other simple sugars tested. Maximal agarase production was observed at pH 8.0, and temperature 30 °C. The bacterium had no requirement for NaCl for both growth and production of agarases. The bacterium did not utilize other polysaccharides like ĸ-carrageenan, alginate, cellulose and CMC. The activity staining of partially purified agarase preparation after native-PAGE revealed the presence of three different agarases, agarase LSL-11a, LSL-11b and LSL-11c, whose molecular weights were estimated to be 76, 64 and 46 kDa respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agbo J., Moss M., 1979 The isolation and characterization of agarolytic bacteria from low land river Canadian Journal of Microbiology 115:355–368

    Google Scholar 

  • Andrews A.T., 1986 Electrophoresis Theory, Techniques & Biochemical & Clinical Applications, 2nd ed. Clarendon press Oxford ISBN ISBN 0198546327

    Google Scholar 

  • Andrykovitch G., Marx I., 1988 Isolation of new polysaccharide-degrading bacterium from a salt marsh Applied and Environmental Microbiology 54:1061–1062

    Google Scholar 

  • Anzai Y., Kim H., Park J.Y., Wakabayashi H., Oyaizu H., 2000 Phylogenetic affiliation of the Pseudomonads based on 16S rRNA sequence International Journal of Systematic and Evolutionary Microbiology 50:1563–1589

    CAS  Google Scholar 

  • Aoki T., Araki T., Kitamikado M., 1990 Purification and characterization of a novel β-agarase from Vibrio sp. AP-2 European Journal of Biochemistry 187:461–465

    Article  CAS  Google Scholar 

  • Araki T., Lu Z., Morishita T., 1998 Optimization of parameters for isolation of protoplasts from Gracilaria  verssucosa (Rhodophyta) Journal of Marine Biotechnology 6:193–197

    Google Scholar 

  • Bae, M.C., Kim, J., Shim, H.S., Byun, D.S., Cho, D.M. & Kim, H.R. 2003 Purification and Characterization of the α-agarase from Pseudomonas sp. AP5333. Second International Symposium on Fisheries Sciences and Technology for Academic Exchange between Hokkaido University and Pukyong National University, November 5, Hakodate, Japan

  • Chiura H.X., Tsukamoto K., 2000 Purification and characterization of novel agarase secreted by marine bacterium, Pseudoalteromonas sp. strain CKT1 Microbes and the Environment 15:11–22

    Article  Google Scholar 

  • Dygert S., Li L., Florida D., Thoma J.A., 1965 Determination of reducing sugar with improved precision Analytical Biochemistry 13:367–374

    Article  CAS  Google Scholar 

  • Ghadi S.C., Muraleedharan U.D., Jawaid S., 1997 Screening for agarolytic bacteria and development if a novel method for in situ detection of agarase Journal of Marine Biotechnology 5:194–200

    CAS  Google Scholar 

  • Groseline, H.E. 1933 Studies on agardigesting bacteria. Journal of Bacteriology 26, 435–457

    Google Scholar 

  • Hassairi I., Amar B., Nonus M., Gupta B.B., 2001 Production and separation of α-agarase from Alteromonas  agarlyticus strain GJ1B Bioresource Technology 79:47–51

    Article  CAS  Google Scholar 

  • Hofsten B.V., Malmqvist M., 1975 Degradation of agar by Gram-negative bacterium Journal of General Microbiology 87:150–158

    Google Scholar 

  • Hosada A., Sakai M., Kanazawa S., 2003 Isolation and characterization of agar- degrading Paenibacillus spp. Associated with the Rhizosphere of Spinach Bioscience Biotechnology and Biochemistry 67:1048–1055

    Article  Google Scholar 

  • Hunger W., Claus D., 1978 Reisolation and growth conditions of Bacillus agar-exedens Antonie van Leeuwenhoek 44:105–113

    Article  CAS  Google Scholar 

  • Ivanova E.P., Kiprianova E.A., Mikhailov V.V., Levanova G.F., Garagulya A.D., Gorshkova N.M., Vysotskii M.V., Nicolau D.V., Yumoto N., Taguchi T., Yoshikawa S., 1998 Phenotypic diversity of Pseudoalteromonas  citrea from different marine habitats and emendation of descriptionInternational Journal of Systematic Bacteriology 48:247–256

    Article  Google Scholar 

  • Kim B.J., Kim H.J., Ha S.H., Hwang S.H., Byun D.S., Lee T.H., Kong J.Y., 1999 Purification and characterization of β-agarase from marine bacterium Bacillus cereus ASK202 Biotechnology Letters 21:1011–1015

    Article  CAS  Google Scholar 

  • Kobayashi R., Takisada M., Suzuki T., Kirimura K., Usami S., 1997 Neoagarobiose as a novel moisturizer with whitening effect Bioscience Biotechnology and Biochemistry 61:162–163

    CAS  Google Scholar 

  • Kong J.Y., Hwang S.H., Kim B.J., Bae S.K., Kim J.D., 1997 Cloning and expression of an agarase gene from a marine bacterium Pseudomonas sp. W7 Biotechnology Letters19(1):23–26

    Article  CAS  Google Scholar 

  • Kumar S., Tamura K., Jakobsen I.B., Nei M., (2001) MEGA2, molecular evolutionary genetics analysis software Bioinformatics 17:1244–1245

    Article  CAS  Google Scholar 

  • Leon O., Quintana L., Peruzzo G., Slebe J.C., 1992 Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1 Applied and Environmental Microbiology 58:4060–4063

    CAS  Google Scholar 

  • Moore E.R.B., Mau M., Arnscheidt A., Boettger E.C., Hutson R.A., Collins M.D., Van de Peer Y., De Wachter R., Timmis K.N., 1996 The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships Systematic and Applied Microbiology 19:478–492

    CAS  Google Scholar 

  • Morrice L.M., McLean M.W., Williamson F.B., Long W.F., 1983 β-Agarases I and II from Pseudomonas atlantica. Purification and some properties European Journal of Biochemistry 135:553–558

    Article  CAS  Google Scholar 

  • Ohta Y., Hatada Y., Nogi Y., Li Z., Ito S., Horikoshi K., 2004 Cloning, expression and characterization of glycoside hydrolase family 86 β-agarase from deep-sea Microbulbifer-like isolate Applied Microbiology and Biotechnology 66:266–275

    Article  CAS  Google Scholar 

  • Potin P., Richard C., Rochas C., Kloareg B., 1993 Purification and characterization of the α-agarase from Alteromonas  agarlyticus (Cataldi) comb. Nov., strain GJIb European Journal of Biochemistry 214:599–607

    Article  CAS  Google Scholar 

  • Sambrook J., Fritsch E.F., Maniatis T., (1989) Molecular Cloning, a Laboratory Manual 2nd ed. Cold Spring Harbor Laboratory Cold Spring Harbor, NY ISBN 0879693096

    Google Scholar 

  • Sampietro A.R., Sampietro A.V., 1971 Characterization of agarolytic system of Agarobactrerium  pastinator Biochica et Biophysica Acta 224:65–70

    Google Scholar 

  • Sugano Y., Terada I., Arita M., Noma M., Matsumoto T., 1993 Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. Strain JT0107 Applied and Environmental Microbiology 59:1549–1554

    CAS  Google Scholar 

  • Stainer R.Y., 1942 Agar-decomposing strains of the Actinomycetes  coelicolor species-group Journal of Bacteriology 44:555–570

    Google Scholar 

  • Van Der Meulen H.J., Harder W., Veldkamp H., 1974 Isolation and Characterization of Cytophaga  flevensis sp. Nov., a new agarolytic Flexibacterium Antonie van Leeuwenhoek 40:329–346

    Article  Google Scholar 

  • Vera J., Alvarez R., Murano E., Slebe J.C., Leon O., 1998 Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase Applied and Environmental Microbiology 64:4378–4383

    CAS  Google Scholar 

  • Wang J., Jiang X., Mou H., Guan H., 2004 Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacteriumJournal of Applied Phycology 16:333–340

    Article  CAS  Google Scholar 

  • Yamaura I., Matsumoto T., Fuoatsu M., Shigeiri H., Shibata T., 1991 Purification and properties of agarase from Pseudomonas sp. PT-5 Agricultural and Biological Chemistry 55:2531–2536

    CAS  Google Scholar 

  • Yoshizawa Y., Ametani A., Tsunehiro J., Nomura K., Itoh M., Fukui F., Kaminogawa S., 1995 Macrophage stimulation activity of the polysaccharide fraction from a marine algae (Porphyra  yezoensis), structure–function relationships and improved solubility Bioscience Biotechnology and Biochemistry 59:1933–1937

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. H.S. Savithri and Prof. N. Appaji Rao, IISc, Bangalore, India. This study was supported by fund from Department of Biotechnology, Govt. of India and one of the authors, Lakshmikanth M. is grateful to Gulbarga University, Gulbarga for providing fellowship during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lalitha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmikanth, M., Manohar, S., Patnakar, J. et al. Optimization of Culture Conditions for the Production of Extracellular Agarases from Newly Isolated Pseudomonas Aeruginosa AG LSL-11. World J Microbiol Biotechnol 22, 531–537 (2006). https://doi.org/10.1007/s11274-005-9068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-005-9068-2

Keywords

Navigation