Skip to main content
Log in

Enhanced thermal properties for epoxy composites with a three-dimensional graphene oxide filler

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, we report a simple and efficient method to prepare three-dimensional graphene oxide (3DGO) network by freeze drying and investigate the effect of 3DGO network on thermal properties of epoxy composites. It was found that the 3DGO network not only improved thermal conductivity, thermal stability, glass transition temperature and storage modulus of epoxy composites, but also reduced the thermal expansion properties of epoxy composites. For instance, the thermal conductivity value of epoxy composite with only 1.3 wt% 3DGO is 0.62 Wm-1K-1, increased by 148 % in comparison with that of the neat epoxy (0.25 Wm-1K-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Waskiewicz, K. Zenkner, E. Langer, M. Lenartowicz, and I. Gajlewicz, Prog. Org. Coat., 76, 1040 (2013).

    Article  CAS  Google Scholar 

  2. A. Gergely, I. Bertóti, T. Török, É. Pfeifer, and E. Kálmán, Prog. Org. Coat., 76, 17 (2013).

    Article  CAS  Google Scholar 

  3. Y. Hao, F. Liu, and E. H. Han, Prog. Org. Coat., 76, 571 (2013).

    Article  CAS  Google Scholar 

  4. B. G. Soares, M. L. Celestino, M. Magioli, V. X. Moreira, and D. Khastgir, Synth. Met., 160, 1981 (2010).

    Article  CAS  Google Scholar 

  5. A. A. Azeez, K. Y. Rhee, S. J. Park, and D. Hui, Compos. Pt. B-Eng., 45, 308 (2013).

    Article  CAS  Google Scholar 

  6. Y. Luo, Y. Huang, X. Ren, X. Duan, and Q. Wang, Opt. Commun., 310, 187 (2014).

    Article  CAS  Google Scholar 

  7. B. Dercks, R. Zecirovic, G. Ruffert, M. P. Grün, and M. Grünewald, Chemie Ingenieur Technik, 83, 1125 (2011).

    Article  CAS  Google Scholar 

  8. R. J. McGlen, R. Jachuck, and S. Lin, Appl. Therm. Eng., 24, 1143 (2004).

    Article  Google Scholar 

  9. J. Felba, “Thermally Conductive Nanocomposites”, pp.277–314, Nano-Bio-Electronic, Photonic and MEMS Packaging, Springer, 2010.

    Google Scholar 

  10. Y. X. Fu, Z. X. He, D. C. Mo, and S. S. Lu, Int. J. Therm. Sci., 86, 276 (2014).

    Article  CAS  Google Scholar 

  11. M. Lee, Y. Choi, K. Sugio, K. Matsugi, and G. Sasaki, Compos. Sci. Technol., 97, 1 (2014).

    Article  CAS  Google Scholar 

  12. J. Kovácik, Š. Emmer, and J. Bielek, Int. J. Therm. Sci., 90, 298 (2015).

    Article  Google Scholar 

  13. J. R. Choi, Y. S. Lee, and S. J. Park, J. Ind. Eng. Chem., 20, 3421 (2014).

    Article  CAS  Google Scholar 

  14. H. Ji, S. Wang, M. Li, and J. Kim, Mater. Lett., 116, 219 (2014).

    Article  CAS  Google Scholar 

  15. J. Yu, X. Huang, L. Wang, P. Peng, C. Wu, X. Wu, and P. Jiang, Polym. Chem., 2, 1380 (2011).

    Article  CAS  Google Scholar 

  16. J. Yu, H. Mo, and P. Jiang, Polym. Adv. Technol., 26, 514 (2015).

    Article  CAS  Google Scholar 

  17. Y. Yao, X. Zeng, K. Guo, R. Sun, and J. B. Xu, Compos. Pt. A-Appl. Sci. Manuf., 69, 49 (2015).

    Article  CAS  Google Scholar 

  18. G. Chen, W. Yang, R. Dong, M. Hussain, and G. Wu, Mater. Des., 63, 109 (2014).

    Article  CAS  Google Scholar 

  19. M. Farbod, A. Ahangarpour, and S. G. Etemad, Particuology, 22, 59 (2015).

    Article  CAS  Google Scholar 

  20. S. I. Kundalwal, R. Suresh Kumar, and M. C. Ray, Int. J. Heat Mass Transfer, 72, 440 (2014).

    Article  CAS  Google Scholar 

  21. Z. Hajjar, A. M. Rashidi, and A. Ghozatloo, Int. Commun. Heat Mass Transfer, 57, 128 (2014).

    Article  CAS  Google Scholar 

  22. X. Shen, X. Lin, J. Jia, Z. Wang, Z. Li, and J. K. Kim, Carbon, 80, 235 (2014).

    Article  CAS  Google Scholar 

  23. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett., 87, 215502 (2001).

    Article  CAS  Google Scholar 

  24. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8, 902 (2008).

    Article  CAS  Google Scholar 

  25. Y. Wang, J. Yu, W. Dai, Y. Song, D. Wang, L. Zeng, and N. Jiang, Polym. Compos., 36, 556 (2015).

    Article  CAS  Google Scholar 

  26. W. Dai, J. Yu, Y. Wang, Y. Song, H. Bai, K. Nishimura, H. Liao, and N. Jiang, Macromol. Res., 22, 983 (2014).

    Article  CAS  Google Scholar 

  27. J. T. Choi, D. H. Kim, K. S. Ryu, H. I. Lee, H. M. Jeong, C. M. Shin, J. H. Kim, and B. K. Kim, Macromol. Res., 19, 809 (2011).

    Article  CAS  Google Scholar 

  28. J. Guerrero-Contreras and F. Caballero-Briones, Mater. Chem. Phys., 153, 209 (2015).

    Article  CAS  Google Scholar 

  29. J. Chen, B. Yao, C. Li, and G. Shi, Carbon, 64, 225 (2013).

    Article  CAS  Google Scholar 

  30. T. T. Wu and J. M. Ting, Surf. Coat. Technol., 231, 487 (2013).

    Article  CAS  Google Scholar 

  31. L. Sun and B. Fugetsu, Mater. Lett., 109, 207 (2013).

    Article  CAS  Google Scholar 

  32. J. Kim, M. Park, H. K. Shin, J. Choi, B. Pant, P. S. Saud, T. An, S. H. Chae, and H. Y. Kim, Mater. Lett., 149, 15 (2015).

    Article  CAS  Google Scholar 

  33. X. She, T. Liu, N. Wu, X. Xu, J. Li, D. Yang, and R. Frost, Mater. Chem. Phys., 143, 240 (2013).

    Article  CAS  Google Scholar 

  34. L. G. Cancado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, Nano Lett., 11, 3190 (2011).

    Article  CAS  Google Scholar 

  35. J. Choi, N. D. K. Tu, S. S. Lee, H. Lee, J. S. Kim, and H. Kim, Macromol. Res., 22, 1104 (2014).

    Article  CAS  Google Scholar 

  36. B. Tang, G. Hu, H. Gao, and L. Hai, Int. J. Heat Mass Transfer, 85, 420 (2015).

    Article  CAS  Google Scholar 

  37. C. Li and G. Shi, Nanoscale, 4, 5549 (2012).

    Article  CAS  Google Scholar 

  38. X. Wang, W. Xing, P. Zhang, L. Song, H. Yang, and Y. Hu, Compos. Sci. Technol., 72, 737 (2012).

    Article  CAS  Google Scholar 

  39. B. Ahmadi-Moghadam, M. Sharafimasooleh, S. Shadlou, and F. Taheri, Mater. Des., 66, 142 (2015).

    Article  CAS  Google Scholar 

  40. G. D. Park, H. O. Jung, K. M. Kim, J. H. Lim, J. W. Lee, S. G. Lee, J. H. Lee, and S. R. Kim, Macromol. Res., 23, 396 (2015).

    Article  CAS  Google Scholar 

  41. Y. X. Fu, Z. X. He, D. C. Mo, and S. S. Lu, Appl. Therm. Eng., 66, 493 (2014).

    Article  CAS  Google Scholar 

  42. S. Chatterjee, J. W. Wang, W. S. Kuo, N. H. Tai, C. Salzmann, W. L. Li, R. Hollertz, F. A. Nüesch, and B. T. T. Chu, Chem. Phys. Lett., 531, 6 (2012).

    Article  CAS  Google Scholar 

  43. J. Kim, B.-S. Yim, J.-M. Kim, and J. Kim, Microelectron. Reliability, 52, 595 (2012).

    Article  CAS  Google Scholar 

  44. T. Zhou, Express Polym. Lett., 9, 608 (2015).

    Article  CAS  Google Scholar 

  45. Z. Wang, R. Qi, J. Wang, and S. Qi, Ceram. Int., 41, 13541 (2015).

    Article  CAS  Google Scholar 

  46. F. Wang, L. T. Drzal, Y. Qin, and Z. Huang, J. Mater. Sci., 50, 1082 (2014).

    Article  Google Scholar 

  47. H. Ribeiro, W. M. da Silva, J. C. Neves, H. D. R. Calado, R. Paniago, L. M. Seara, D. D. Mercês Camarano, and G. G. Silva, Polym. Test., 43, 182 (2015).

    Article  CAS  Google Scholar 

  48. M. M. El-Tonsy, Polym. Test., 23, 355 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhong Yu or Shaorong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Yu, J., Wu, X. et al. Enhanced thermal properties for epoxy composites with a three-dimensional graphene oxide filler. Fibers Polym 16, 2617–2626 (2015). https://doi.org/10.1007/s12221-015-5637-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5637-7

Keywords

Navigation