Skip to main content
Log in

Enhanced thermal and mechanical properties of liquid crystalline-grafted graphene oxide-filled epoxy composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Epoxy composites with biphenyl liquid crystalline polyester (BLCP)-grafted graphene oxides (GO) as inclusions were prepared successfully. The thermal and texture analyses of BLCP were characterized by DSC and POM. The results show that the texture structure of BLCP turned into fan texture from woven texture with increasing temperature and present double texture structure. More importantly, the thermal and mechanical properties of epoxy composites could be improved by incorporating BLCP-grafted GO (BLCP-GO). The epoxy composite with only 0.5 wt% BLCP-GO produced an increase in the initial decomposition temperature (T d) by 28 °C and glass transition temperature (T g) by 17.2 °C when compared with the neat epoxy. Moreover, for the mechanical properties tests, the composites with 1.0 wt% BLCP-GO exhibit an increase in impact strength, tensile strength, flexural strength and flexural modulus by 103, 52, 66, and 56 %, respectively, compared with the neat epoxy resin. These excellent performances of the graphene–epoxy composites have a great potential for applications in aerospace and other electrical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Huang ZD, Liang R, Zhang B et al (2013) Evolution of flexible 3D graphene oxide/carbon nanotube/polyaniline composite papers and their supercapacitive performance. Compos Sci Technol 88:126–133

    Article  CAS  Google Scholar 

  2. Ribeiro H, da Silva WM, Neves JC et al (2015) Multifunctional nanocomposites based on tetraethylenepentamine-modified graphene oxide/epoxy. Polym Test 43:182–192

    Article  CAS  Google Scholar 

  3. Lim MY, Oh J, Kim HJ et al (2015) Effect of antioxidant grafted graphene oxides on the mechanical and thermal properties of polyketone composites. Eur Polym J 69:156–167

    Article  CAS  Google Scholar 

  4. Jeong YG, An JE (2014) Microstructure and electrical property of epoxy/graphene/MWCNT hybrid composite films manufactured by UV-curing. Macromol Res 22(10):1059–1065

    Article  CAS  Google Scholar 

  5. Chung SC, Hahm WG, Im SS et al (2002) Poly(ethylene terephthalate)(PET) nanocomposites filled with fumed silicas by melt compounding. Macromol Res 10(4):221–229

    Article  CAS  Google Scholar 

  6. Yu JH, Huo RM, Wu C et al (2012) Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites. Macromol Res 20(8):816–826

    Article  CAS  Google Scholar 

  7. Vennerberg D, Hall R, Kessler MR (2014) Supercritical carbon dioxide-assisted silanization of multi-walled carbon nanotubes and their effect on the thermo-mechanical properties of epoxy nanocomposites. Polymer 55(16):4156–4163

    Article  CAS  Google Scholar 

  8. Xu M, Huang Q, Wang X et al (2015) Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids. Ind Crops Prod 70:56–63

    Article  CAS  Google Scholar 

  9. Basnet S, Otsuka M, Sasaki C et al (2015) Functionalization of the active ingredients of Japanese green tea (Camellia sinensis) for the synthesis of bio-based epoxy resin. Ind Crops Prod 73:63–72

    Article  CAS  Google Scholar 

  10. Gadipelli S, Guo ZX (2015) Graphene-based materials: synthesis and gas sorption, storage and separation. Prog Mater Sci 69:1–60

    Article  CAS  Google Scholar 

  11. Senthilnathan J, Liu YF, Rao KS et al (2014) Submerged liquid plasma for the synchronized reduction and functionalization of graphene oxide. Sci Rep 4:4395

    Article  Google Scholar 

  12. Fang M, Wang KG, Lu HB et al (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19(38):7098–7105

    Article  CAS  Google Scholar 

  13. Ramezanzadeh B, Ghasemi E, Mahdavian M et al (2015) Characterization of covalently-grafted polyisocyanate chains onto graphene oxide for polyurethane composites with improved mechanical properties. Chem Eng J 281:869–883

    Article  CAS  Google Scholar 

  14. Ge H, Ma Z (2015) Microwave preparation of triethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI). Carbohydr Polym 131:280–287

    Article  CAS  Google Scholar 

  15. Fan X, Wang L (2015) High-performance lubricant additives based on modified graphene oxide by ionic liquids. J Colloid Interface Sci 452:98–108

    Article  CAS  Google Scholar 

  16. Mija A, Navard P, Peiti C et al (2010) Shear induced structuration of liquid crystalline epoxy thermosets. Eur Polym J 46(6):1380–1387

    Article  CAS  Google Scholar 

  17. He X-Z, F-d Zhang, Jia Y et al (2015) Branched-arm macromolecule liquid crystals-containing fluorine and isosorbide-structure and properties. J Mol Struct 1092:96–103

    Article  CAS  Google Scholar 

  18. Didehban K, Namazi H, Entezami AA (2010) Non-covalent dendrimer-based liquid crystalline complexes: synthesis and characterization. Eur Polym J 46(9):1923–1931

    Article  CAS  Google Scholar 

  19. Qi B, Lu SR, Xiao XE et al (2014) Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide. Express Polym Lett 8(7):467–479

    Article  CAS  Google Scholar 

  20. Kim JY, Kang SW, Kim SH et al (2005) Deformation behavior and nucleation activity of a thermotropic liquid-crystalline polymer in poly(butylene terephthalate)-based composites. Macromol Res 13(1):19–29

    Article  CAS  Google Scholar 

  21. Selvarasu C, Kannan P (2015) Synthesis, characterization of azobenzene and cinnamate ester based calamitic liquid crystalline compounds and their photoresponsive properties. J Mol Struct 1092:176–186

    Article  CAS  Google Scholar 

  22. Lu SR, Li SR, Yu JH et al (2013) Epoxy nanocomposites filled with thermotropic liquid crystalline epoxy grafted graphene oxide. RSC Adv 3(23):8915–8923

    Article  CAS  Google Scholar 

  23. Li X, Wen R, Zhang Y et al (2009) Photoresponsive side-chain liquid crystalline polymers with an easily cross-linkable azobenzene mesogen. J Mater Chem 19(2):236–245

    Article  CAS  Google Scholar 

  24. Alici O, Karatas I (2015) Novel liquid crystal aldoximes and aldoxime ethers: synthesis, characterization and liquid crystal behavior. J Mol Liq. doi:10.1016/j.molliq.2015.04.016

    Google Scholar 

  25. Liu Q, Wang J, Dong YD et al (2015) Using a selective cadmium-binding peplipid to create responsive liquid crystalline nanomaterials. J Colloid Interface Sci 449:122–129

    Article  CAS  Google Scholar 

  26. Jaisankar SN, Nelson DJ, Brammer CN (2009) New synthesis and characterization of ionic polyurethane-urea liquid crystals. Polymer 50(20):4775–4780

    Article  CAS  Google Scholar 

  27. Zeng C, Lu SR, Song LF et al (2015) Enhanced thermal properties in a hybrid graphene-alumina filler for epoxy composites. RSC Adv 5(45):35773–35782

    Article  CAS  Google Scholar 

  28. Chen SH, Lv SF, Hou GX et al (2015) Mechanical and thermal properties of biphenyldiol formaldehyde resin/gallic acid epoxy composites enhanced by graphene oxide. J Appl Polym Sci 132(41):42637

    Article  Google Scholar 

  29. Wu S, Ladani RB, Zhang J et al (2015) Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94:607–618

    Article  CAS  Google Scholar 

  30. Sahoo SK, Mohanty S, Nayak SK (2015) Study on the effect of woven sisal fiber mat on mechanical and viscoelastic properties of petroleum based epoxy and bioresin modified toughened epoxy network. J Appl Polym Sci 132(43):42699

    Article  Google Scholar 

  31. Pan L, Lu S, Xiao X et al (2015) Enhanced mechanical and thermal properties of epoxy with hyperbranched polyester grafted perylene diimide. RSC Adv 5(5):3177–3186

    Article  CAS  Google Scholar 

  32. Saha M, Tambe P, Pal S et al (2015) Effect of non-ionic surfactant assisted modification of hexagonal boron nitride nanoplatelets on the mechanical and thermal properties of epoxy nanocomposites. Compos Interfaces 22(7):611–627

    Article  CAS  Google Scholar 

  33. Tong W, Zhang Y, Zhang Q et al (2015) Achieving significantly enhanced dielectric performance of reduced graphene oxide/polymer composite by covalent modification of graphene oxide surface. Carbon 94:590–598

    Article  CAS  Google Scholar 

  34. Ashori A, Rahmani H, Bahrami R (2015) Preparation and characterization of functionalized graphene oxide/carbon fiber/epoxy nanocomposites. Polym Test 48:82–88

    Article  CAS  Google Scholar 

  35. Meng F-B, Cui Y, Chen H-B et al (2009) Phase behaviors of comb-like liquid crystalline polysiloxanes containing fluorinated mesogenic units. Polymer 50(5):1187–1196

    Article  CAS  Google Scholar 

  36. Liu P, Yao Z, Zhou J (2015) Preparation of reduced graphene oxide/Ni0·4Zn0·4Co0·2Fe2O4 nanocomposites and their excellent microwave absorption properties. Ceram Int 41(10):13409–13416

    Article  CAS  Google Scholar 

  37. Zhang J, Sun Y, Wu Q et al (2014) Preparation of graphene oxide-based surface plasmon resonance biosensor with Au bipyramid nanoparticles as sensitivity enhancer. Colloids Surf B 116:211–218

    Article  CAS  Google Scholar 

  38. Song SH, Park KH, Kim BH et al (2013) Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater 25(5):732–737

    Article  CAS  Google Scholar 

  39. Meng FB, Du C, Zhou NY et al (2013) Synthesis and characterization of fluorinated liquid-crystalline elastomers containing chiral liquid-crystalline crosslinking units. Eur Polym J 49(10):3392–3401

    Article  CAS  Google Scholar 

  40. Godzwon J, Sienkowska MJ, Galewski Z (2012) Liquid-crystalline polymorphism of 4-heptyloxybenzylidene-4′-alkyloxyanilinesand their phase equilibrium with 4-octyloxyphenyl 4-nitrobenzoate. Thermochim Acta 531:75–82

    Article  CAS  Google Scholar 

  41. Lagerwall JPF, Scalia G (2012) A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys 12(6):1387–1412

    Article  Google Scholar 

  42. Wang F, Cao H, Li K et al (2012) Control homogeneous alignment of chiral nematic liquid crystal with smectic-like short-range order by thermal treatment. Colloids Surf A 410:31–37

    Article  CAS  Google Scholar 

  43. Coleman JN, Khan U, Blau WJ et al (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652

    Article  CAS  Google Scholar 

  44. van Rooyen LJ, Karger-Kocsis J, Kock LD (2015) Improving the helium gas barrier properties of epoxy coatings through the incorporation of graphene nanoplatelets and the influence of preparation techniques. J Appl Polym Sci 132(39):42584

    Google Scholar 

  45. Zhang QX, Yu ZZ, Xie XL et al (2004) Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer 45(17):5985–5994

    Article  CAS  Google Scholar 

  46. Braun U, Balabanovich AI, Schartel B et al (2006) Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer 47(26):8495–8508

    Article  CAS  Google Scholar 

  47. Yuan ZK, Yu JH, Rao BL et al (2014) Enhanced thermal properties of epoxy composites by using hyperbranched aromatic polyamide grafted silicon carbide whiskers. Macromol Res 22(4):405–411

    Article  CAS  Google Scholar 

  48. Yasmin A, Daniel IM (2004) Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 45(24):8211–8219

    Article  CAS  Google Scholar 

  49. Gojny FH, Wichmann MHG, Fiedler B et al (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045

    Article  CAS  Google Scholar 

  50. Naebe M, Wang J, Amini A et al (2014) Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci Rep 4:4375

    Article  Google Scholar 

  51. Biswas S, Shahinur S, Hasan M et al (2015) Physical, mechanical and thermal properties of jute and bamboo fiber reinforced unidirectional epoxy composites. Procedia Eng 105:933–939

    Article  CAS  Google Scholar 

  52. Li Y, Zhu H, Zhu S et al (2015) Hybridizing wood cellulose and graphene oxide toward high-performance fibers. NPG Asia Mater 7(1):150

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by National Natural Science Foundation of China (51303034, 51367007, 51463007, and 51573201), the Natural Science Foundation of Guangxi Province, China (2014GXNSFDA118006, 2014GXNSFBA118034 and 2015GXNSFBA139231), Guangxi Universities Scientific Research Project (No. YB2014165), Natural Science Foundation of Ningbo (No. Y40307DB05) and International Science and Technology Cooperation Program of Ningbo (No. 2015D10003), Guangxi Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials (15AA, 13KF-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaorong Lu or Jinhong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Lu, S., Xiao, X. et al. Enhanced thermal and mechanical properties of liquid crystalline-grafted graphene oxide-filled epoxy composites. Polym. Bull. 74, 1611–1627 (2017). https://doi.org/10.1007/s00289-016-1792-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1792-2

Keywords

Navigation