Skip to main content
Log in

Maternal heat stress regulates the early fat deposition partly through modification of m6A RNA methylation in neonatal piglets

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

It is known that heat stress induces various physiological challenges in livestock production including changes in lipid metabolism. However, the molecular mechanism of how heat stress regulates lipid metabolism at the mRNA level is still largely unknown. N6-methyl-adenosine (m6A) is the most common and abundant modification on RNA molecules present in eukaryotes, which affects almost all aspects of RNA metabolism and thus gives us the hint that it may participate in changes of gene expression of lipid metabolism during heat stress. Therefore, the purpose of the present study was to investigate the effect of heat stress on fat metabolism in 21-day Large White × Landrace piglets from sows challenged by heat stress from day 85 of gestation until day 21 of lactation. We measured the expression of heat shock proteins (HSPs), genes associated with lipid metabolism, m6A-related enzymes, and m6A levels in abdominal fat and liver of offspring piglets. Our results showed that high ambient temperature significantly increased the expression of HSP70 (P < 0.01) in both liver and abdominal fat and upregulated HSP27 in the liver (P < 0.05). Additionally, genes involved in fat metabolism such as ACACA, FASN, DGAT1, PPAR-γ, SREBP-1c, and FABP4 were upregulated in abdominal fat in the experimental group challenged by high ambient temperature. In the liver, heat stress increased the mRNA expression of DGAT1, SREBP-1c, and CD36 and decreased ATGL and CPT1A expression (P < 0.05). The m6A level was higher in the heat stress group compared with the control group in the liver and abdominal fat of offspring piglets (P < 0.01). Notably, heat stress also increased gene expression of METTL14, WTAP, FTO, and YTHDF2 (P < 0.05) in both abdominal fat and liver. The protein abundances of METTL3, METTL14, and FTO were upregulated after heat stress in abdominal fat (P < 0.05) but not in the liver. Although there was no difference in the protein abundance of YTHDF2 in abdominal fat, its level was increased in the liver (P < 0.05). In conclusion, our findings showed that heat stress increased expression of genes involved in lipogenesis, which provided scientific evidence to the observation of increased fatness in pigs under heat stress. We also demonstrated a possible mechanism that m6A RNA modification may be associated with these changes in lipid metabolism upon heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N (2014) De novo lipogenesis in health and disease. Metabolism 63(7):895–902

    Article  CAS  PubMed  Google Scholar 

  • Baldridge KC, Contreras LM (2014) Functional implications of ribosomal RNA methylation in response to environmental stress. Crit Rev Biochem Mol Biol 49(1):69–89

    Article  CAS  PubMed  Google Scholar 

  • Baziz HA, Geraert P, Padilha J, Guillaumin S (1996) Chronic heat exposure enhances fat deposition and modifies muscle and fat partition in broiler carcasses. Poult Sci 75(4):505–513

    Article  Google Scholar 

  • Blanchard PG, Turcotte V, Cote M, Gelinas Y, Nilsson S, Olivecrona G, Deshaies Y, Festuccia WT (2016) Peroxisome proliferator-activated receptor γ activation favours selective subcutaneous lipid deposition by coordinately regulating lipoprotein lipase modulators, fatty acid transporters and lipogenic enzymes. Acta Physiol 217(3):227–239

    Article  CAS  Google Scholar 

  • Boddicker RL, Seibert JT, Johnson JS, Pearce SC, Selsby JT, Gabler NK, Lucy MC, Safranski TJ, Rhoads RP, Baumgard LH, Ross JW (2014) Gestational heat stress alters postnatal offspring body composition indices and metabolic parameters in pigs. PLoS One 9(11):e110859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai M, Liu Q, Jiang Q, Wu R, Wang XX, Wang YZ (2018) Loss of m6A on FAM134B promotes adipogenesis in porcine adipocytes through m6A-YTHDF2-dependent way. IUBMB Life 00(00):1–7

    Google Scholar 

  • Calderon-Dominguez M, Sebastián D, Fucho R, Weber M, Mir JF, García-Casarrubios E, Obregón MJ, Zorzano A, Valverde ÁM, Serra D, Herrero L (2016) Carnitine palmitoyltransferase 1 increases lipolysis, UCP1 protein expression and mitochondrial activity in brown adipocytes. PLoS One 11(7):e0159399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zhou B, Luo Y, Huang Z, Jia G, Liu G, Zhao H (2016) Tissue distribution of porcine FTO and its effect on porcine intramuscular preadipocytes proliferation and differentiation. PLoS One 11(3):e0151056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinetti G, Fruchart JC, Staels B (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 49(10):497–505

    Article  CAS  PubMed  Google Scholar 

  • Collin A, van Milgen J, Dubois S, Noblet J (2001) Effect of high temperature on feeding behaviour and heat production in group-housed young pigs. Br J Nutr 86(1):63–70

    Article  CAS  PubMed  Google Scholar 

  • Cui JX, Zeng YQ, Wang H, Chen W, Du JF, Chen QM, Hu YX, Yang L (2011) The effects of DGAT1 and DGAT2 mRNA expression on fat deposition in fatty and lean breeds of pig. Livest Sci 140(1–3):292–296

    Article  Google Scholar 

  • Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C, Delplanque J, Vaillant E, Pattou F, Ruiz J, Weill J, Levy-Marchal C, Horber F, Potoczna N, Hercberg S, Le Stunff C, Bougnères P, Kovacs P, Marre M, Balkau B, Cauchi S, Chèvre JC, Froguel P (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39(6):724–726

    Article  CAS  Google Scholar 

  • Fan B, Du Z-Q, Rothschild MF (2009) The fat mass and obesity-associated (FTO) gene is associated with intramuscular fat content and growth rate in the pig. Anim Biotechnol 20(2):58–70

    Article  CAS  PubMed  Google Scholar 

  • Ferre P, Foufelle F (2010) Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 12(Suppl 2):83–92

    Article  CAS  PubMed  Google Scholar 

  • Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJ, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CN, Doney AS, Morris AD, Smith GD, Hattersley AT, McCarthy MI (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316(5826):889–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Dominissini D, Rechavi G, He C (2014) Gene expression regulation mediated through reversible m 6 A RNA methylation. Nat Rev Genet 15(5):293–306

    Article  CAS  PubMed  Google Scholar 

  • Gan F, Chen X, Liao SF, Lv C, Ren F, Ye G, Pan C, Huang D, Shi J, Shi X, Zhou H, Huang K (2014) Selenium-enriched probiotics improve antioxidant status, immune function, and selenoprotein gene expression of piglets raised under high ambient temperature. J Agric Food Chem 62(20):4502–4508

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Vasic R, Tebaldi T, Song Y, Teng R, Joshi P, Viero G, Xiao A, Batista P, Li H, Flavell R, Halene S (2018) Mettl3 mediated m6A modification is essential in fetal hematopoiesis. Am Soc Hematol 132(Suppl 1):3825

    Google Scholar 

  • Geraert PA, Padilha JC, Guillaumin S (1996) Metabolic and endocrine changes induced by chronic heatexposure in broiler chickens: growth performance, body composition and energy retention. Br J Nutr 75(2):195–204

    CAS  PubMed  Google Scholar 

  • Grunnet LG, Nilsson E, Ling C, Hansen T, Pedersen O, Groop L, Vaag A, Poulsen P (2009) Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue. Diabetes 58(10):2402–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagiwara A, Cornu M, Cybulski N, Polak P, Betz C, Trapani F, Terracciano L, Heim MH, Rüegg MA, Hall MN (2012) Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 15(5):725–738

    Article  CAS  PubMed  Google Scholar 

  • Holmes C (1971) Growth and backfat depth of pigs kept at a high temperature. Anim Sci 13(3):521–527

    Article  Google Scholar 

  • Houten SM, Wanders RJ (2010) A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherit Metab Dis 33(5):469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7(12):885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JS, Sanz Fernandez MV, Patience JF, Ross JW, Gabler NK, Lucy MC, Safranski TJ, Rhoads RP, Baumgard LH (2015) Effects of in utero heat stress on postnatal body composition in pigs: II. Finishing phase. J Anim Sci 93(1):82–92

    Article  CAS  PubMed  Google Scholar 

  • Kakehashi A, Hagiwara A, Imai N, Nagano K, Nishimaki F, Banton M, Wei M, Fukushima S, Wanibuchi H (2013) Mode of action of ethyl tertiary-butyl ether hepatotumorigenicity in the rat: evidence for a role of oxidative stress via activation of CAR, PXR and PPAR signaling pathways. Toxicol Appl Pharmacol 273(2):390–400

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Zhang Z, Yu L, Li Y, Liang M, Zhou L (2018) FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation. J Cell Biochem 119(7):5676–5685

    Article  CAS  PubMed  Google Scholar 

  • Kaspi A, Khurana I, Ziemann M, Connor T, Spolding B, Zimmet P, Walder K, El-Osta A (2018) Diet during pregnancy is implicated in the regulation of hypothalamic RNA methylation and risk of obesity in offspring. Mol Nutr Food Res 7:e1800134

    Article  CAS  Google Scholar 

  • Katsumata M, Yano H, Ishida N, Miyazaki A (1990) Influence of a high ambient temperature and administration of clenbuterol on body composition in rats. J Nutr Sci Vitaminol (Tokyo) 36(6):569–578

    Article  CAS  Google Scholar 

  • Kersten S (2001) Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2(4):282–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Ohsugi M, Sasako T, Awazawa M, Umehara AIT, Kobayashi N, Okazaki Y, Kubota N, Suzuki R, Waki H, Horiuchi K, Hamakubo T, Kodama T, Aoe S, Tobe K, Kadowaki T, Uekia K (2018) The RNA methyltransferase complex of WTAP, METTL3, and METTL14 regulates mitotic clonal expansion in adipogenesis. Mol Cell Biol 38(16):00116–00118

    Article  Google Scholar 

  • Kouba M, Hermier D, Le Dividich J (1999) Influence of a high ambient temperature on stearoyl-CoA-desaturase activity in the growing pig. Comp Biochem Physiol B Biochem Mol Biol 124(1):7–13

    Article  CAS  PubMed  Google Scholar 

  • Kouba M, Hermier D, Le Dividich J (2001) Influence of a high ambient temperature on lipid metabolism in the growing pig. J Anim Sci 79(1):81–87

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yang J, Zhu YB, Liu Y, Shi X, Yang GS (2016) Mouse maternal high-fat intake dynamically programmed mRNA m6A modifications in adipose and skeletal muscle tissues in offspring. Int J Mol Sci 17(8):1336

    Article  CAS  PubMed Central  Google Scholar 

  • Li CM, Wang YR, Li L, Han ZY, Mao SY, Wang GL (2019) Betaine protects against heat exposure–induced oxidative stress and apoptosis in bovine mammary epithelial cells via regulation of ROS production. Cell Stress Chaperones 24:453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C (2014) A METTL3–METTL14 complex mediates mammalian nuclear RNA N 6-adenosine methylation. Nat Chem Biol 10(2):93–95

    Article  CAS  Google Scholar 

  • Lodhi IJ, Wei X, Semenkovich CF (2011) Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter. Trends Endocrinol Metab 22(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lossec G, Herpin P, Le Dividich J (1998) Thermoregulatory responses of the newborn pig during experimentally induced hypothermia and rewarming. Experimental Physiology:Translation and Integration 83(5):667–678

  • Lu Q, Wen J, Zhang H (2007) Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poult Sci 86(6):1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Ma Y, Li Q, Liu E, Jin M, Zhang L, Wei C (2019) The role of N 6-methyladenosine RNA methylation in the heat stress response of sheep (Ovis aries). Cell Stress Chaperones:1–10

  • Lucy MC, Safranski TJ (2017) Heat stress in pregnant sows: thermal responses and subsequent performance of sows and their offspring. Mol Reprod Dev 84(9):946–956

    Article  CAS  PubMed  Google Scholar 

  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149(7):1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morak M, Schmidinger H, Riesenhuber G, Rechberger GN, Kollroser M, Haemmerle G, Zechner R, Kronenberg F, Hermetter A (2012) Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues. Mol Cell Proteomics 11(12):1777–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto R (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259(5100):1409–1411

    Article  CAS  PubMed  Google Scholar 

  • Odle J, Lin X, van Kempen TA, Drackley JK, Adams SH (1995) Carnitine palmitoyltransferase modulation of hepatic fatty acid metabolism and radio-HPLC evidence for low ketogenesis in neonatal pigs. J Nutr 125(10):2541–2549

    CAS  PubMed  Google Scholar 

  • O'Hea EK, Leveille GA (1969) Significance of adipose tissue and liver as sites of fatty acid synthesis in the pig and the efficiency of utilization of various substrates for lipogenesis. J Nutr 99(3):338–344

    Article  CAS  PubMed  Google Scholar 

  • Parida S, Mishra SR, Mishra C, Mohapatra S, Dalai N, Mahapatra APK, Kundu AK (2019) Impact of heat stress on transcriptional abundance of HSP70 in cardiac cells of goat. Anim Biotechnol 12:1–6

    Article  Google Scholar 

  • Prunier A, de Braganca MM, Le Dividich J (1997) Influence of high ambient temperature on performance of reproductive sows. Livest Prod Sci 52(2):123–133

    Article  Google Scholar 

  • Qu H, Ajuwon K (2018) Adipose tissue-specific responses reveal an important role of lipogenesis during heat stress adaptation in pigs. J Anim Sci 96(3):975–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu H, Yan H, Lu H, Donkin S, Ajuwon K (2016) Heat stress in pigs is accompanied by adipose tissue–specific responses that favor increased triglyceride storage. J Anim Sci 94(5):1884–1896

    Article  CAS  PubMed  Google Scholar 

  • Quiniou N, Noblet J (1999) Influence of high ambient temperatures on performance of multiparous lactating sows. J Anim Sci 77(8):2124–2134

    Article  CAS  PubMed  Google Scholar 

  • Ravacci GR, Brentani MM, Tortelli TC, Torrinhas RS, Santos JR, Logullo AF, Waitzberg DL (2015) Docosahexaenoic acid modulates a HER2-associated lipogenic phenotype, induces apoptosis, and increases trastuzumab action in HER2-overexpressing breast carcinoma cells. Biomed Res Int 2015:838652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakatani M, Alvarez N, Takahashi M, Hansen P (2012) Consequences of physiological heat shock beginning at the zygote stage on embryonic development and expression of stress response genes in cattle. J Dairy Sci 95(6):3080–3091

    Article  CAS  PubMed  Google Scholar 

  • Skjærven KH, Olsvik PA, Finn RN, Holen E, Hamre K (2011) Ontogenetic expression of maternal and zygotic genes in Atlantic cod embryos under ambient and thermally stressed conditions. Comp Biochem Physiol A Mol Integr Physiol 159(2):196–205

    Article  CAS  PubMed  Google Scholar 

  • Tao X, Chen J, Jiang Y, Wei Y, Chen Y, Xu H, Zhu L, Tang G, Li M, Jiang A, Shuai S, Bai L, Liu H, Ma J, Jin L, Wen A, Wang Q, Zhu G, Xie M, Wu J, He T, Huang C, Gao X, Li X (2017) Transcriptome-wide N 6-methyladenosine methylome profiling of porcine muscle and adipose tissues reveals a potential mechanism for transcriptional regulation and differential methylation pattern. BMC Genomics 18(1):336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallanat B, Anderson SP, Brown-Borg HM, Ren H, Kersten S, Jonnalagadda S, Srinivasan R, Corton JC (2010) Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). BMC Genomics 11:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhu L, Chen J, Wang Y (2015) mRNA m6A methylation downregulates adipogenesis in porcine adipocytes. Biochem Biophys Res Commun 459(2):201–207

    Article  CAS  PubMed  Google Scholar 

  • Wegner K, Lambertz C, Daş G, Reiner G, Gauly M (2014) Climatic effects on sow fertility and piglet survival under influence of a moderate climate. Animal 8(9):1526–1533

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Jiang D, Wang Y, Wang X (2016) N 6-methyladenosine (m 6 A) methylation in mRNA with a dynamic and reversible epigenetic modification. Mol Biotechnol 58(7):450–459

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Liu Y, Yao Y, Zhao Y, Bi Z, Jiang Q, Liu Q, Cai M, Wang F, Wang Y, Wang X (2018) FTO regulates adipogenesis by controlling cell cycle progression via m6A-YTHDF2 dependent mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 1863(10):1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Murakoshi N, Igarashi M, Hirayama A, Ito Y, Seo Y, Tada H, Aonuma K (2012) PPAR-γ activator pioglitazone prevents age-related atrial fibrillation susceptibility by improving antioxidant capacity and reducing apoptosis in a rat model. J Cardiovasc Electrophysiol 23(2):209–217

    Article  PubMed  Google Scholar 

  • Yu J, Li Y, Wang T, Zhong X (2018) Modification of N6-methyladenosine RNA methylation on heat shock protein expression. PLoS One 13(6):e0198604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue YN, Liu J, Cui XL, Cao J, Luo GZ, Zhang ZZ, Cheng T, Gao MS, Shu X, Ma HH, Wang FQ, Wang XX, Shen B, Wang YZ, Feng XH, He C, Liu JZ (2018) VIRMA mediates preferential m 6 A mRNA methylation in 3′ UTR and near stop codon and associates with alternative polyadenylation. Cell Discov 4:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang KX, Zhao PP, Guo GG, Guo Y, Li SW, He Y, Sun X, Chai HL, Zhang W, Xing MW (2016) Arsenic trioxide exposure induces heat shock protein responses in cock livers. Biol Trace Elem Res 170(2):459–465

    Article  CAS  PubMed  Google Scholar 

  • Zhao BS, Roundtree IA, He C (2017) Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18(1):31–42

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29

    Article  CAS  Google Scholar 

  • Zhong X, Yu J, Frazier K, Weng X, Li Y, Cham CM, Dolan K, Zhu X, Hubert N, Tao Y, Lin F, Martinez-Guryn K, Huang Y, Wang T, Liu J, He C, Chang EB, Leone V (2018) Circadian clock regulation of hepatic lipid metabolism by modulation of m6A mRNA methylation. Cell Rep 25(7):1816–1828

  • Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB (2015) Dynamic m 6 A mRNA methylation directs translational control of heat shock response. Nature 526(7574):591–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science (New York, NY) 306(5700):1383–1386

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of the P. R. of China (nos. 31802067 and 31872364) and the Natural Science Foundation of Guangdong Province (No. 2018A030310201) and the National Key R&D Program of China (No. 2018YFD0500600 and No. 2018YFD0501000).

Author information

Authors and Affiliations

Authors

Contributions

JH Heng, SH Zhang, and WT Guan designed the experiment and supervised the project. JH Heng, M Tian, and WF Zhang performed the experiments and conducted the lab work. JH Heng, M Tian, and F Chen conducted the statistical analysis. JH Heng and SH Zhang wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wutai Guan or Shihai Zhang.

Ethics declarations

Ethics approval

All animal use and care protocols were approved by the Committee of the South China Agricultural University Animal Care and Use (20110107–1).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heng, J., Tian, M., Zhang, W. et al. Maternal heat stress regulates the early fat deposition partly through modification of m6A RNA methylation in neonatal piglets. Cell Stress and Chaperones 24, 635–645 (2019). https://doi.org/10.1007/s12192-019-01002-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-019-01002-1

Keywords

Navigation