Skip to main content
Log in

Effects of Delignification on Crystalline Cellulose in Lignocellulose Biomass Characterized by Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Delignification, a common practice in the pulping industry, has been proposed and explored as a means to selectively remove lignin from lignocellulosic biomass and, thus, increase enzyme accessibility for cellulose hydrolysis. However, without knowing structural changes of cellulose in biomass, it is difficult to fully understand the effects of the delignification process on cellulose hydrolysis. In this study, the amount and aggregation of crystalline cellulose in hardwood biomass delignified using oxygen and sodium chlorite as reactive agents were examined with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD). The results indicated that the amount of crystalline cellulose and the XRD crystallite size increased with both oxygen and chlorite delignification processes. In addition, the “α-cellulose equivalent” fraction estimated by SFG spectroscopy increased greater than glucan amount with the delignification process. Changes in crystal size might be due to the aggregation of cellulose crystals, along with the increase in crystalline cellulose amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahlgren P, Goring D (1971) Removal of wood components during chlorite delignification of black spruce. Can J Chem 49(8):1272–1275

    Article  CAS  Google Scholar 

  2. Atalla R, Crowley M, Himmel M, Atalla R (2014) Irreversible transformations of native celluloses, upon exposure to elevated temperatures. Carbohydr Polym 100:2–8

    Article  CAS  PubMed  Google Scholar 

  3. Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12(7):2434–2439

    Article  CAS  PubMed  Google Scholar 

  4. Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89(3):802–809

    Article  CAS  PubMed  Google Scholar 

  5. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25(7):759–761

    Article  CAS  PubMed  Google Scholar 

  6. Chundawat SP, Donohoe BS, da Costa Sousa L, Elder T, Agarwal UP, Lu F, Ralph J, Himmel ME, Balan V, Dale BE (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4(3):973–984

    Article  CAS  Google Scholar 

  7. De Souza I, Bouchard J, Methot M, Berry R, Argyropoulos D (2002) Carbohydrates in oxygen delignification. Part I: changes in cellulose crystallinity. J Pulp Paper Sci 28(5):167–170

    Google Scholar 

  8. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913–925

    Article  CAS  PubMed  Google Scholar 

  9. Driemeier C, Pimenta MT, Rocha GJ, Oliveira MM, Mello DB, Maziero P, Gonçalves AR (2011) Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose. Cellulose 18(6):1509–1519

    Article  CAS  Google Scholar 

  10. Faix O (1992) Fourier transform infrared spectroscopy. In: Lin S, Dence C (eds) Methods in Lignin Chemistry. Springer Series in Wood Science. Springer Series in Wood Science. Springer, Berlin, Heidelberg, pp 83–109

  11. Fengel D, Wegener G. 1983. Wood: chemistry, ultrastructure, reactions: De Gruyter, New York

  12. Gellerstedt G, Zhang L (2001) Chemistry of TCF-bleaching with oxygen and hydrogen peroxide. In: Argyropoulos DS (ed) Oxidative Delignification Chemistry, vol 785. ACS Symposium Series. American Chemical Society, Washington, DC, pp 61–72

  13. Gierer J (1985) Chemistry of delignification. Wood Sci Technol 19(4):289–312

    CAS  Google Scholar 

  14. Handakumbura PP, Matos DA, Osmont KS, Harrington MJ, Heo K, Kafle K, Kim SH, Baskin TI, Hazen SP (2013) Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls. BMC Plant Biol 13(1):131

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hubbell CA, Ragauskas AJ (2010) Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresour Technol 101(19):7410–7415

    Article  CAS  PubMed  Google Scholar 

  16. Irvine G (1985) The significance of the glass transition of lignin in thermomechanical pulping. Wood Sci Technol 19(2):139–149

    Article  CAS  Google Scholar 

  17. Kafle K, Greeson K, Lee C, Kim SH (2014) Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Text Res J 84(16):1692–1699. doi:10.1177/0040517514527379

  18. Kafle K, Shi R, Lee CM, Mittal A, Park YB, Sun Y-H, Park S, Chiang V, Kim SH (2014) Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods. Cellulose 21(4):2219–2231

    Article  CAS  Google Scholar 

  19. Kafle K, Xi X, Lee C, Tittmann B, Cosgrove D, Park Y, Kim S (2014) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21(2):1075–1086

    Article  Google Scholar 

  20. Kahar P (2013) Synergistic effects of pretreatment process on enzymatic digestion of rice straw for efficient ethanol fermentation. In: Petre M (ed) Environmental Biotechnology - New Approaches and Prospective Applications. InTech, Croatia, pp 65–87

  21. Kim SH, Lee CM, Kafle K (2013) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30(12):2127–2141

    Article  CAS  Google Scholar 

  22. Kim SH, Lee CM, Kafle K, Park YB, Xi X (2013) Vibrational sum frequency generation (SFG) spectroscopic study of crystalline cellulose in biomass. In: Liu Z (ed) Proc. SPIE vol 8845, pp 884501–884508

  23. Kumar R, Wyman CE (2009) Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnol Bioeng 102(6):1544–1557

    Article  CAS  PubMed  Google Scholar 

  24. LaComb R, Nadiarnykh O, Townsend SS, Campagnola PJ (2008) Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology. Opt Commun 281(7):1823–1832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Langan P, Petridis L, O'Neill HM, Pingali SV, Foston M, Nishiyama Y, Schulz R, Lindner B, Hanson BL, Harton S (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16(1):63–68

    Article  CAS  Google Scholar 

  26. Lee CM, Dazen K, Kafle K, Moore A, Johnson D, Park S, Kim SH (2015) Correlations of apparent cellulose crystallinity determined by XRD, NMR, IR, Raman, and SFG methods. Adv Polym Sci (in press)

  27. Lee CM, Kafle K, Park YB, Kim SH (2014) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 16(22):10844–10853

    Article  CAS  PubMed  Google Scholar 

  28. Lee CM, Mittal A, Barnette AL, Kafle K, Park Y, Shin H, Johnson DK, Park S, Kim SH (2013) Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 20(3):991–1000

    Article  CAS  Google Scholar 

  29. Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117(22):6681–6692

    Article  CAS  PubMed  Google Scholar 

  30. Lu S, Li Q, Wei H, Chang M-J, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun Y-H, Yuan L et al (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci 110(26):10848–10853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Morrison IM (1975) Delignification and hemicellulose extraction of cell walls of Lolium perenne and Trifolium pratense. Phytochemistry 14(2):505–508

    Article  CAS  Google Scholar 

  32. Nishiyama Y, Johnson G, French A (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19(2):319–336

    Article  CAS  Google Scholar 

  33. Nishiyama Y, Langan P, O’Neill H, Pingali S, Harton S (2014) Structural coarsening of aspen wood by hydrothermal pretreatment monitored by small- and wide-angle scattering of X-rays and neutrons on oriented specimens. Cellulose 21(2):1015–1024

    Article  Google Scholar 

  34. Okamoto T, Meshitsuka G (2010) The nanostructure of kraft pulp 1: evaluation of various mild drying methods using field emission scanning electron microscopy. Cellulose 17(6):1171–1182

    Article  CAS  Google Scholar 

  35. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10

    Article  Google Scholar 

  36. Park YB, Lee CM, Kafle K, Park S, Cosgrove DJ, Kim SH (2014) Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and x-ray diffraction. Biomacromolecules 15(7):2718–2724

    Article  CAS  PubMed  Google Scholar 

  37. Park YB, Lee CM, Koo B-W, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol 163(2):907–913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978

    Article  CAS  Google Scholar 

  39. Pingali SV, O’Neill HM, Nishiyama Y, He L, Melnichenko YB, Urban V, Petridis L, Davison B, Langan P (2014) Morphological changes in the cellulose and lignin components of biomass occur at different stages during steam pretreatment. Cellulose 21(2):873–878

    Article  CAS  Google Scholar 

  40. Sene CF, McCann MC, Wilson RH, Grinter R (1994) Fourier-transform Raman and Fourier-transform infrared spectroscopy (an investigation of five higher plant cell walls and their components). Plant Physiol 106(4):1623–1631

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Sjöström E (1993) Wood chemistry: fundamentals and applications: Academic Press, Inc., California

  42. Smith BC (1998) Infrared spectral interpretation: a systematic approach: CRC press, Florida

  43. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792

    Article  CAS  PubMed  Google Scholar 

  44. Stewart D, Wilson H, Hendra P, Morrison I (1995) Fourier-transform infrared and Raman spectroscopic study of biochemical and chemical treatments of oak wood (Quercus rubra) and barley (Hordeum vulgare) straw. J Agric Food Chem 43(8):2219–2225

    Article  CAS  Google Scholar 

  45. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9(6):433–443

    Article  CAS  PubMed  Google Scholar 

  46. Van Acker R, Leplé J-C, Aerts D, Storme V, Goeminne G, Ivens B, Légée F, Lapierre C, Piens K, Van Montagu MCE et al (2014) Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci 111(2):845–850

    Article  PubMed Central  PubMed  Google Scholar 

  47. Wang W, Chen X, Donohoe B, Ciesielski P, Katahira R, Kuhn E, Kafle K, Lee C, Park S, Kim S et al (2014) Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover. Part 1: chemical and physical substrate analysis. Biotechnol Biofuels 7(1):57

    Article  PubMed Central  PubMed  Google Scholar 

  48. Yu Z, Jameel H, H-m C, Park S (2011) The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour Technol 102(19):9083–9089

    Article  CAS  PubMed  Google Scholar 

  49. Zernike F, Midwinter JE (2006) Applied nonlinear optics: Dover Publications, Inc., New York

Download references

Acknowledgments

This work was supported by Subcontract No. XGB-3-23024-01 with the National Renewable Energy Laboratory, under Prime Contract No. DE-AC36-08-GO28308 with the US Department of Energy. The portion of the sample preparation and XRD work was supported by National Research Foundation of Korea under Award No. 2011-0025029.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong H. Kim or Sunkyu Park.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafle, K., Lee, C.M., Shin, H. et al. Effects of Delignification on Crystalline Cellulose in Lignocellulose Biomass Characterized by Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction. Bioenerg. Res. 8, 1750–1758 (2015). https://doi.org/10.1007/s12155-015-9627-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9627-9

Keywords

Navigation