Skip to main content
Log in

Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This work investigates the evolution of cellulose crystals from sugarcane lignocellulose (bagasse and leaves) submitted to prehydrolysis (hydrothermal, dilute acid, or steam explosion) and soda delignifications. Raw and treated materials are characterized by X-ray diffraction with modeling of area-detector patterns. Three treatment effects are correlated: increase in cellulose content, quantified by strong acid hydrolysis; increase in average cellulose crystallite width, inferred from sharper 200 diffraction peaks; and decrease in crystallite distortion, evidenced by d 200-spacing approaching reference values. Crystal contents measured according to recent developments (in Driemeier and Calligaris, J Appl Cryst 44:184–192, 2011) are compared to cellulose contents. Limitations for this comparison are discussed. Results are consistent with minimum non-crystalline cellulose in raw lignocellulose, and with partial cellulose decrystallization or more defective crystallites in treated materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe K, Yamamoto H (2005) Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determined by X-ray diffraction. J Wood Sci 51:334–338

    Article  CAS  Google Scholar 

  • Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537

    Google Scholar 

  • Andersson S, Wikberg H, Pesonen E, Maunu SL, Serimaa R (2004) Studies of crystallinity of scots pine and Norway spruce cellulose. Trees Struct Funct 18:346–353

    Article  CAS  Google Scholar 

  • Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  • Bonarski JT, Olek W (2011) Application of the crystalline volume fraction for characterizing the ultrastructural organization of wood. Cellulose 18:223–235

    Article  Google Scholar 

  • Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32:627–633

    Article  CAS  Google Scholar 

  • Brett C, Waldron K (1996) Physiology and biochemistry of plant cell walls. Chapman & Hall, London

    Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    Article  CAS  Google Scholar 

  • Cortez LAB (2010) Sugarcane bioethanol—R&D for productivity and sustainability, Blucher, São Paulo

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  Google Scholar 

  • da Silva AM (2004) Caracterização da parede celular de Saccharum officinarum L. (cana-de-açucar) e Brachiaria decumbens Stapf (braquiaria). Ph.D., thesis, Universidade Estadual de Campinas, Campinas

  • Debzi EM, Chanzy H, Sugiyama J, Tekely P, Excoffier G (1991) The Iα-Iβ transformation of highly crystalline cellulose by annealing in various media. Macromolecules 24:6816–6822

    Article  CAS  Google Scholar 

  • Delhez R, de Keijser TH, Mittemeijer EJ (1982) Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis. Fresenius Z Anal Chem 312:1–16

    Article  CAS  Google Scholar 

  • Delhez R, de Keijser TH, Langford JI, Louër D, Mittemeijer EJ, Sonneveld EJ (1993) Crystal Imperfection broadening and peak shape in the Rietveld Method. In: Young RA (ed) The Rietveld method. Oxford University Press, New York, pp 132–166

    Google Scholar 

  • Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Cryst 44:184–192

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reations. Walter de Gruyter, Berlin

    Google Scholar 

  • Fink HP, Hofmann D, Philipp B (1995) Some aspects of lateral chain order in cellulosics from X-ray scattering. Cellulose 2:51–70

    CAS  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff 57:191–202

    Article  CAS  Google Scholar 

  • Gouveia ER, Nascimento RT, Souto-Maior AM, Rocha GJM (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quim Nova 32:1–4

    Article  Google Scholar 

  • Hermans PH, Weidinger A (1948) Quantitative x-ray investigations on the crystallinity of cellulose fibers—a background analysis. J Appl Phys 19:491–506

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  • Horii F, Yamamoto H, Kitamaru R, Tanahashi M, Higuchi T (1987) Transformation of native cellulose crystals induced by saturated steam at high-temperatures. Macromolecules 20:2946–2949

    Article  CAS  Google Scholar 

  • Hosemann R, Hindeleh AM (1995) Structure of crystalline and paracrystalline condensed matter. J Macromol Sci Part B Phys 34:327–356

    Article  Google Scholar 

  • Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromolecules 11:2300–2305

    Article  CAS  Google Scholar 

  • Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782

    Article  CAS  Google Scholar 

  • Kocherbitov V, Ulvenlund S, Kober M, Jarring K, Arnebrant T (2008) Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. J Phys Chem B 112:3728–3734

    Article  CAS  Google Scholar 

  • Leppäanen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015

    Article  Google Scholar 

  • Liitiä T, Maunu SL, Hortling B, Tamminen T, Pekkala O, Varhimo A (2003) Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 10:307–316

    Article  Google Scholar 

  • Lutterotti L, Matthies S, Wenk H-R, Schultz AJ, Richardson J (1997) Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys 81:594–600

    Article  CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152

    Article  CAS  Google Scholar 

  • Mihranyan A, Llagostera AP, Karmhag R, Strømme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269:433–442

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  • Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using C-13 NMR signal strengths. Solid State Nucl Magn Reson 15:21–29

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003a) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP, Langan P (2003b) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017

    Article  CAS  Google Scholar 

  • Okano T, Koyanagi A (1986) Structural variation of native cellulose related to its source. Biopolymers 25:851–861

    Article  CAS  Google Scholar 

  • Paakkari T, Blomberg M, Serimaa R, Järvinen M (1988) A texture correction for quantitative X-ray powder diffraction analysis of cellulose. J Appl Cryst 21:393–397

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10

    Article  Google Scholar 

  • Preston RD (1979) Polysaccharide conformation and cell-wall function. Ann Rev Plant Physiol 30:55–78

    Article  CAS  Google Scholar 

  • Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871

    Article  CAS  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71

    Article  CAS  Google Scholar 

  • Rocha GJM, Silva FT, Araújo GT, Curvelo AAS (1997) A fast and accurate method for determination of cellulose and polyoses by HPLC. In: Brazilian symposium on the chemistry of lignin and other wood components, Curitiba

  • Roe R-J (2000) Methods of X-ray and neutron scattering in polymer science. Oxford University Press, New York

    Google Scholar 

  • Soccol CR, Vandenberghe LPD, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitao V, Gottschalk LMF, Ferrara MA, Bom EPD, de Moraes LMP, Araujo JD (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101:4820–4825

    Article  CAS  Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

    Article  CAS  Google Scholar 

  • Sturcova A, His I, Apperley D, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5:1333–1339

    Article  CAS  Google Scholar 

  • Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576

    Article  CAS  Google Scholar 

  • Warren BE (1990) X-ray diffraction. Dover Publications, New York

    Google Scholar 

  • Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/xyloglucan networks—ultrastructural and molecular aspects. Plant J 8:491–504

    Article  CAS  Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS C-13 NMR spectroscopy. Carbohydr Res 312:123–129

    Article  CAS  Google Scholar 

  • Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530

    Article  CAS  Google Scholar 

  • Zabler S, Paris O, Burgert I, Fratzl P (2010) Moisture changes in the plant cell wall force cellulose crystallites to deform. J Struc Biol 171:133–141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. A. A. S. Curvelo for critical reading of the manuscript. Research supported by LNLS—Brazilian Synchrotron Light Laboratory and LNBio—Brazilian Biosciences National Laboratory (project GAR-6293) and by FAPESP (projects 2010/05523-3 and 2010/08691-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Driemeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driemeier, C., Pimenta, M.T.B., Rocha, G.J.M. et al. Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose. Cellulose 18, 1509–1519 (2011). https://doi.org/10.1007/s10570-011-9592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9592-1

Keywords

Navigation