Skip to main content

Advertisement

Log in

Characterization of crystalline cellulose in biomass: Basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Cellulose is among the most important and abundant biopolymers in biosphere. It is the main structural component of a vast number of plants that carries vital functions for plant growth. Cellulose-based materials have been used in a variety of human activities ranging from papers and fabrics to engineering applications including production of biofuels. However, our understanding of the cellulose structure in its native form is quite limited because the current experimental methods often require separation or purification processes and provide only partial information of the cellulose structure. This paper aims at providing a brief background of the cellulose structure and reviewing the basic principles, capabilities and limitations of the cellulose characterization methods that are widely used by engineers dealing with biomass. The analytical techniques covered in this paper include x-ray diffraction, nuclear magnetic resonance, and vibrational spectroscopy (infrared, Raman, and sum-frequency-generation). The scope of the paper is restricted to the application of these techniques to the structural analysis of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Atalla and A. Isogai, Celluloses in comprehensive natural products ii: Chemistry and biology, Elsevier Science (2010).

    Google Scholar 

  2. Y. Yu and H. Wu, Ind. Eng. Chem. Res., 48, 10682 (2009).

    CAS  Google Scholar 

  3. M. Gray, A. Converse and C. Wyman, “Sugar monomer and oligomer solubility,” Appl. Biochem. Biotechnol., B. Davison, J. Lee, M. Finkelstein and J. McMillan, Eds., Humana Press, 179 (2003).

    Google Scholar 

  4. A. C. O’Sullivan, Cellulose, 4, 173 (1997).

    Google Scholar 

  5. C. Somerville, Annu. Rev. Cell Dev. Biol., 22, 53 (2006).

    CAS  Google Scholar 

  6. A. N. Fernandes, L.H. Thomas, C.M., Altaner, P. Callow, V. T. Forsyth, D.C. Apperley, C. J. Kennedy and M. C. Jarvis, PNAS, 108, E1195 (2011).

    Google Scholar 

  7. S.Y. Ding and M. E. Himmel, J. Agric. Food Chem., 54, 597 (2006).

    CAS  Google Scholar 

  8. Y. Nishiyama, J. Wood Sci., 55, 241 (2009).

    CAS  Google Scholar 

  9. P. Sarkar, E. Bosneaga and M. Auer, J. Exp. Bot., 60, 3615 (2009).

    CAS  Google Scholar 

  10. C. T. Brett, Int. Rev. Cytol., 199, 161 (2000).

    CAS  Google Scholar 

  11. I.M. Saxena and R.M. Brown, Ann. Bot., 96, 9 (2005).

    CAS  Google Scholar 

  12. M. E. Himmel, S.Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J.W. Brady and T. D. Foust, Science, 315, 804 (2007).

    CAS  Google Scholar 

  13. W. Zhao and A. Berg, Lab on a Chip, 2008, 1988 (2008).

    Google Scholar 

  14. S. Pérez and D. Samain, Advances in Carbohydrate Chemistry and Biochemistry, 64, 25 (2010).

    Google Scholar 

  15. S. Park, D. K. Johnson, C. I. Ishizawa, P. A. Parilla and M. F. Davis, Cellulose, 16, 641 (2009).

    CAS  Google Scholar 

  16. C. Somerville, H. Youngs, C. Taylor, S. C. Davis and S. P. Long, Science, 329, 790 (2010).

    CAS  Google Scholar 

  17. A. Carroll and C. Somerville, Ann. Rev. Plant Biol., 60, 165 (2009).

    CAS  Google Scholar 

  18. R. Atalla and D. VanderHart, Solid State Nucl. Magn. Reson., 15, 1 (1999).

    CAS  Google Scholar 

  19. W. L. Earl and D. L. VanderHart, Macromolecules, 14, 570 (1981).

    CAS  Google Scholar 

  20. F. Horii, A. Hirai and R. Kitamaru, Polym. Bull., 10, 357 (1983).

    CAS  Google Scholar 

  21. Y. Nishiyama, P. Langan and H. Chanzy, J. Am. Chem. Soc., 124, 9074 (2002).

    CAS  Google Scholar 

  22. Y. Nishiyama, J. Sugiyama, H. Chanzy and P. Langan, J. Am. Chem. Soc., 125, 14300 (2003).

    CAS  Google Scholar 

  23. H. Marrinan and J. Mann, J. Polym. Sci., 21, 301 (1956).

    Google Scholar 

  24. J. Sugiyama, J. Persson and H. Chanzy, Macromolecules, 24, 2461 (1991).

    CAS  Google Scholar 

  25. J. Mann and H. Marrinan, J. Polym. Sci., 27, 595 (1958).

    CAS  Google Scholar 

  26. A. L. Barnette, L.C. Bradley, B.D. Veres, E. P. Schreiner, Y.B. Park, J. Park, S. Park and S. H. Kim, Biomacromolecules, 12, 2434 (2011).

    CAS  Google Scholar 

  27. A. L. Barnette, C. Lee, L. C. Bradley, E. P. Schreiner, Y. B. Park, H. Shin, D. J. Cosgrove, S. Park and S. H. Kim, Carbohydr. Polym., 89, 802 (2012).

    CAS  Google Scholar 

  28. C.M. Lee, A. Mittal, A. L. Barnette, K. Kafle, Y. B. Park, H. Shin, D. K. Johnson, S. Park and S. H. Kim, Cellulose, 20, 991 (2013).

    CAS  Google Scholar 

  29. C.M. Lee, N. M.A. Mohamed, H.D. Watts, J.D. Kubicki and S. H. Kim, J. Phys. Chem. B, 117, 6681 (2013).

    CAS  Google Scholar 

  30. P. Zugenmaier, Crystalline cellulose and cellulose derivatives: Characterization and structures, Springer (2008).

    Google Scholar 

  31. Y. Habibi, L.A. Lucia and O. J. Rojas, Chem. Rev., 110, 3479 (2010).

    CAS  Google Scholar 

  32. S. K. Cousins and R.M. Brown Jr., Polymer, 36, 3885 (1995).

    CAS  Google Scholar 

  33. P. Hermans and D. Vermaas, J. Polym. Sci., 1, 149 (1946).

    CAS  Google Scholar 

  34. R. P. Swatloski, S. K. Spear, J. D. Holbrey and R. D. Rogers, J. Am. Chem. Soc., 124, 4974 (2002).

    CAS  Google Scholar 

  35. M. Zavrel, D. Bross, M. Funke, J. Büchs and A. C. Spiess, Bioresour. Technol., 100, 2580 (2009).

    CAS  Google Scholar 

  36. P. Conte, A. Maccotta, C. De Pasquale, S. Bubici and G. Alonzo, J. Agric. Food Chem., 57, 8748 (2009).

    CAS  Google Scholar 

  37. A. Isogai and R. H. Atalla, Cellulose, 5, 309 (1998).

    CAS  Google Scholar 

  38. Y. Wang and Y. Deng, Biotechnol. Bioeng., 102, 1398 (2009).

    CAS  Google Scholar 

  39. W. Blaschek, H. Koehler, U. Semler and G. Franz, Planta, 154, 550 (1982).

    CAS  Google Scholar 

  40. R. J. Viëtor, R. H. Newman, M. A. Ha, D. C. Apperley and M. C. Jarvis, Plant J., 30, 721 (2002).

    Google Scholar 

  41. R. H. Newman and J. A. Hemmingson, Cellulose, 2, 95 (1995).

    CAS  Google Scholar 

  42. J. F. Matthews, M. Bergenstrahle, G. T. Beckham, M. E. Himmel, M. R. Nimlos, J.W. Brady and M. F. Crowley, J. Phys. Chem. B, 115, 2155 (2011).

    CAS  Google Scholar 

  43. J. Hearle, J. Appl. Polymer Sci., 7, 1175 (1963).

    CAS  Google Scholar 

  44. A. Scallan, Text. Res. J., 41, 647 (1971).

    CAS  Google Scholar 

  45. R. H. Atalla and D. L. Vanderhart, Science, 223, 283 (1984).

    CAS  Google Scholar 

  46. H. Yamamoto and F. Horii, Macromolecules, 26, 1313 (1993).

    CAS  Google Scholar 

  47. P. Langan, Y. Nishiyama and H. Chanzy, Biomacromolecules, 2, 410 (2001).

    CAS  Google Scholar 

  48. D. Ruan, L. Zhang, J. Zhou, H. Jin and H. Chen, Macromol. Biosci., 4, 1105 (2004).

    CAS  Google Scholar 

  49. R. Hori and M. Wada, Cellulose, 13, 281 (2006).

    CAS  Google Scholar 

  50. M. Wada, L. Heux, A. Isogai, Y. Nishiyama, H. Chanzy and J. Sugiyama, Macromolecules, 34, 1237 (2001).

    CAS  Google Scholar 

  51. M. Wada, H. Chanzy, Y. Nishiyama and P. Langan, Macromolecules, 37, 8548 (2004).

    CAS  Google Scholar 

  52. M. Wada, L. Heux and J. Sugiyama, Biomacromolecules, 5, 1385 (2004).

    CAS  Google Scholar 

  53. E. S. Gardiner and A. Sarko, Can. J. Chem., 63, 173 (1985).

    CAS  Google Scholar 

  54. H. Chanzy, K. Imada and R. Vuong, Protoplasma, 94, 299 (1978).

    Google Scholar 

  55. F. Horii, A. Hirai and R. Kitamaru, Polym. Bull., 10, 357 (1983).

    CAS  Google Scholar 

  56. P. Langan, Y. Nishiyama and H. Chanzy, J. Am. Chem. Soc., 121, 9940 (1999).

    CAS  Google Scholar 

  57. G. Rappenecker and P. Zugenmaier, Carbohydr. Res., 89, 11 (1981).

    CAS  Google Scholar 

  58. Y. Waseda, Xray diffraction crystallography, Springer Verlag Berlin Heidelberg (2011).

    Google Scholar 

  59. G. Honjo and M. Watanabe, Nature, 181, 326 (1958).

    CAS  Google Scholar 

  60. J. Sugiyama, R. Vuong and H. Chanzy, Macromolecules, 24, 4168 (1991).

    CAS  Google Scholar 

  61. L. Segal, J. Creely, A. Martin and C. Conrad, Text. Res. J., 29, 786 (1959).

    CAS  Google Scholar 

  62. Y. Nishiyama, S. Kuga, M. Wada and T. Okano, Macromolecules, 30, 6395 (1997).

    Google Scholar 

  63. R. Jenkins and R. Snyder, Introduction to x-ray powder diffractometry, Wiley-Interscience (1996).

    Google Scholar 

  64. R. Chandrasekaran, Adv. Carbohydr. Chem. Biochem., 52, 311 (1997).

    CAS  Google Scholar 

  65. S. Chu and G. Jeffrey, Acta Crystallogr., B24, 830 (1968).

    Google Scholar 

  66. J. T. Ham and D.G. Williams, Acta Crystallogr., B26, 1373 (1970).

    Google Scholar 

  67. K. H. Gardner and J. Blackwell, Biopolymers, 13, 1975 (1974).

    CAS  Google Scholar 

  68. A. T. Briinger, Nature, 355, 472 (1992).

    Google Scholar 

  69. K. Gessler, N. Krauss, T. Steiner, C. Betzel, A. Sarko and W. Saenger, J. Am. Chem. Soc., 117, 11397 (1995).

    CAS  Google Scholar 

  70. D. Picot, P. J. Loll and R.M. Garavito, Nature, 367, 243 (1994).

    CAS  Google Scholar 

  71. K. Meyer and L. Misch, Helu Chim. Acta, 20, 232 (1937).

    CAS  Google Scholar 

  72. A. D. French, Cellulose, In press (2013).

    Google Scholar 

  73. N.-H. Kim, T. Imai, M. Wada and J. Sugiyama, Biomacromolecules, 7, 274 (2006).

    CAS  Google Scholar 

  74. A. Patterson, Phys. Rev., 56, 978 (1939).

    CAS  Google Scholar 

  75. R. P. Oliveira and C. Driemeier, J. Appl. Crystallogr., 46, 1196 (2013).

    CAS  Google Scholar 

  76. C. Driemeier and J. Bragatto, J. Phys. Chem. B, 117, 415421 (2012).

    Google Scholar 

  77. S. Park, J. O. Baker, M.E. Himmel, P.A. Parilla and D.K. Johnson, Biotechnol. Biofuels, 3, 1 (2010).

    Google Scholar 

  78. C. Driemeier and G. A. Calligaris, J. Appl. Crystallogr., 44, 184 (2010).

    Google Scholar 

  79. R. Drago, Physical methods in chemistry, W.B. Saunders Company, Philadelphia (1977).

    Google Scholar 

  80. A.E. Derome, Modern nmr techniques for chemistry research, Pergamon Books Inc., New York (1987).

    Google Scholar 

  81. R. Pohmann, “Physical basics of nmr,” In vivo nmr imaging, Schröder, L. and Faber, C., Eds., Humana Press, 3 (2011).

    Google Scholar 

  82. M. J. Duer, Solid state nmr spectroscopy: Principles and applications, Wiley-Blackwell (2008).

    Google Scholar 

  83. D. C. Apperley, Solid state nmr: Basic principles & practice, Momentum Press, New York (2012).

    Google Scholar 

  84. D. D. Laws, H.-M. L. Bitter and A. Jerschow, Angew. Chem. Int. Ed., 41, 3096 (2002).

    CAS  Google Scholar 

  85. R. Pettifer, C. Brouder, M. Benfatto, C. Natoli, C. Hermes and M.R. Lopez, Physical Review B, 42, 37 (1990).

    Google Scholar 

  86. J.W. Hennel and J. Klinowski, “Magic-angle spinning: A historical perspective,” New techniques in solid-state nmr, Springer, 1 (2005).

    Google Scholar 

  87. E.R. Andrew, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 299, 505 (1981).

    CAS  Google Scholar 

  88. H. Kono, S. Yunoki, T. Shikano, M. Fujiwara, T. Erata and M. Takai, J. Am. Chem. Soc., 124, 7506 (2002).

    CAS  Google Scholar 

  89. J. D. Kubicki, M.N.-A. Mohamed and H. D. Watts, Cellulose, 20, 9 (2013).

    CAS  Google Scholar 

  90. P. T. Larsson, K. Wickholm and T. Iversen, Carbohydr. Res., 302, 19 (1997).

    CAS  Google Scholar 

  91. K. Wickholm, P. T. Larsson and T. Iversen, Carbohydr. Res., 312, 123 (1998).

    CAS  Google Scholar 

  92. R. H. Newman, Holzforschung, 58, 91 (2004).

    CAS  Google Scholar 

  93. R. H. Newman, Solid State Nucl. Magn. Reson., 15, 21 (1999).

    CAS  Google Scholar 

  94. H. Yamamoto and F. Horii, Macromolecules, 26, 1313 (1993).

    CAS  Google Scholar 

  95. R. H. Newman and T. C. Davidson, Cellulose, 11, 23 (2004).

    CAS  Google Scholar 

  96. C. N. Banwell, Fundamentals of molecular spectroscopy: 4e, Tata McGraw-Hill Education (1994).

    Google Scholar 

  97. B. H. Stuart, Infrared spectroscopy: Fundamentals and applications, Wiley (2004).

    Google Scholar 

  98. J. H. Wiley and R. H. Atalla, Carbohydr. Res., 160, 113 (1987).

    CAS  Google Scholar 

  99. T. Imai and J. Sugiyama, Macromolecules, 31, 6275 (1998).

    CAS  Google Scholar 

  100. M. Jarvis, Nature, 426, 611 (2003).

    CAS  Google Scholar 

  101. R. H. Atalla, IPC Technical Paper Series, 19, 1 (1975).

    Google Scholar 

  102. U. Agarwal, R. Reiner and S. Ralph, Cellulose, 17, 721 (2010).

    CAS  Google Scholar 

  103. K. Schenzel, S. Fischer and E. Brendler, Cellulose, 12, 223 (2005).

    CAS  Google Scholar 

  104. M. Åkerholm, B. Hinterstoisser and L. Salmén, Carbohydr. Res., 339, 569 (2004).

    Google Scholar 

  105. M. L. Nelson and R. T. O’Connor, J. Appl. Polym. Sci., 8, 1325 (1964).

    CAS  Google Scholar 

  106. R. Jeffries, Polymer, 4, 375 (1963).

    CAS  Google Scholar 

  107. Y. Hishikawa, E. Togawa, Y. Kataoka and T. Kondo, Polymer, 40, 7117 (1999).

    CAS  Google Scholar 

  108. R. Jeffries, J. Appl. Polym. Sci., 8, 1213 (1964).

    CAS  Google Scholar 

  109. K. Hofstetter, B. Hinterstoisser and L. Salmén, Cellulose, 13, 131 (2006).

    CAS  Google Scholar 

  110. Y. Horikawa and J. Sugiyama, Cellulose, 15, 419 (2008).

    CAS  Google Scholar 

  111. A.G. Lambert, P.B. Davies and D. J. Neivandt, Appl. Spectrosc. Rev., 40, 103 (2005).

    CAS  Google Scholar 

  112. Y. Shen, Nature, 337, 519 (1989).

    CAS  Google Scholar 

  113. H.-F. Wang, W. Gan, R. Lu, Y. Rao and B.-H. Wu, Int. Rev. Phys. Chem., 24, 191 (2005).

    Google Scholar 

  114. S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar and V. Gopalan, J. Am. Ceram. Soc., 94, 2699 (2011).

    CAS  Google Scholar 

  115. H.C. Hieu, N. A. Tuan, H. Li, Y. Miyauchi and G. Mizutani, Appl. Spectrosc., 65, 1254 (2011).

    CAS  Google Scholar 

  116. R. LaComb, O. Nadiarnykh, S. S. Townsend and P. J. Campagnola, Opt. Commun., 281, 1823 (2008).

    CAS  Google Scholar 

  117. L. Tian, J. Qu, Z. Guo, Y. Jin, Y. Meng and X. Deng, J. Appl. Phys., 108, 054701 (2010).

    Google Scholar 

  118. F. Vidal and A. Tadjeddine, Rep. Prog. Phys., 68, 1095 (2005).

    CAS  Google Scholar 

  119. C. T. Williams and D. A. Beattie, Surf. Sci., 500, 545 (2002).

    CAS  Google Scholar 

  120. G. L. Richmond, Chem. Rev., 102, 2693 (2002).

    CAS  Google Scholar 

  121. A. Šturcová, I. His, T. J. Wess, G. Cameron and M.C. Jarvis, Biomacromolecules, 4, 1589 (2003).

    Google Scholar 

  122. A. D. French and G. P. Johnson, Cellulose, 16, 959 (2009).

    CAS  Google Scholar 

  123. A. Neville, BioEssays, 3, 4 (1985).

    CAS  Google Scholar 

  124. U. Kutschera, Ann. Bot., 101, 615 (2008).

    CAS  Google Scholar 

  125. W. Wang, X. Chen, B. S. Donohoe, P. N. Ciesielski, A. Mittal, R. Katahira, E. M. Kuhn, K. Kafle, C.M. Lee, S. Park, S. H. Kim, M. P. Tucker, M. E. Himmel and D. K. Johnson, Submitted to Biomass and Bioenergy (2013).

    Google Scholar 

  126. Y.B. Park, C.M. Lee, T. Zhang, B.-W. Koo, S. Park, D. J. Cosgrove and S. H. Kim, Plant Physiol. (http://www.plantphysiol.org/content/early/2013/08/30/pp.113.225235.abstract, Published online before print August 2013, doi:http://dx.doi.org/10.1104/pp.113.225235 Plant Physiology August 2013 pp.225235 (2013).

    Google Scholar 

  127. A. P. Heiner, J. Sugiyama and O. Teleman, Carbohydr. Res., 273, 207 (1995).

    CAS  Google Scholar 

  128. K. Mazeau and L. Heux, J. Phys. Chem. B, 107, 2394 (2003).

    CAS  Google Scholar 

  129. J. F. Matthews, C. E. Skopec, P. E. Mason, P. Zuccato, R.W. Torget, J. Sugiyama, M. E. Himmel and J.W. Brady, Carbohydr. Res., 341, 138 (2006).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong H. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Lee, C.M. & Kafle, K. Characterization of crystalline cellulose in biomass: Basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J. Chem. Eng. 30, 2127–2141 (2013). https://doi.org/10.1007/s11814-013-0162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0162-0

Key words

Navigation