Skip to main content
Log in

The Role of Polymeric Micelles on Chemical Changes of Pretreated Corn Stover, Cellulase Structure, and Adsorption

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Enzymatic hydrolysis of lignocellulosic biomass is limited by rapid cellulase deactivation, consequently requiring large amounts of enzyme to maintain acceptable biomass conversion. In this study, a new approach to improve lignocellulose hydrolysis was investigated. Performing enzymatic hydrolysis of corn stover (CS) in the presence of polymeric–surfactant micelles (PMs) was demonstrated to improve hydrolysis yield to a greater extent than using only surfactant micelles. Application of 2 % (w/w) of polyethylene glycol (PEG 6000) with casein, Tween-20, and Triton X-100 at levels above the critical micelle concentrations increased the hydrolysis yield of CS containing high-bound lignin (extrusion-pretreated) by up to 87.8, 11.7, and 7.5 %, respectively. These PMs were not effective during enzymatic hydrolysis of biomass lacking lignin (Avicel) or alkali-pretreated CS (7.2 % lignin). The main reasons for the enhanced cellulase activity observed due to PEG-casein, PEG-Tween, and PEG-Triton were enhanced cellulase solubilization; reformation of α-helix substructure; and combination of induced cellulase solubilization, α-helix reformation, and chemical changes in the microstructure of biomass, respectively. Deformation of the cellulase substructure during hydrolysis of biomass and its subsequent reformation in the presence of surfactants were shown in this study for the first time. Chemical changes in the microstructure of biomass (e.g., lignin side changes, C–O bonds, and amorphous cellulose) were found to be another potential reason for the effectiveness of surfactants when they are incubated at above 6 g/L for 72 h with biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar R, Wyman CE (2008) Effect of additives on the digestibility of corn stover solid following pretreatment by leading technologies. Biotechnol Bioeng 102:1544–1557

    Article  Google Scholar 

  2. Taherzadeh MJ, Niklasson C, Lidén G (1999) Conversion of dilute-acid hydrolyzates of spruce and birch to ethanol by fed-batch fermentation. Bioresour Technol 69:59–66

    Article  CAS  Google Scholar 

  3. Lee Y, Iyer P, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng/Biotechnol 65:93–115

    Article  CAS  Google Scholar 

  4. Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Lidén G (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36:4659–4665

    Article  CAS  Google Scholar 

  5. Wyman CE (1996) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC

    Google Scholar 

  6. Ferreira SMP, Duarte AP, Queiroz JA, Domingues FC (2009) Influence of buffer systems on Trichoderma reesei Rut C-30 morphology and cellulase production. Electron J Biotechnol 12:1–9

    Article  Google Scholar 

  7. Ma AZ, Hu Q, Qu YB, Bai ZH, Liu WF, Zhuang GQ (2008) The enzymatic hydrolysis rate of cellulose decrease with irreversible adsorption of cellobiohydrolase I. Enzyme Microb Technol 42:543–547

    Article  CAS  Google Scholar 

  8. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087. doi:10.1002/bit.24370

    Google Scholar 

  9. Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591

    Article  CAS  PubMed  Google Scholar 

  10. Zhuo YM, Kim TH, Lee YY, Chen RG, Elander RT (2006) Enzymatic production of xylooligosaccharides from corn stover and corn cobs treated with aqueous ammonia. Appl Biochem Biotechnol 130:586–598

    Article  Google Scholar 

  11. Eckard AD, Muthukumarappan K, Gibbons W (2011) Pretreatment of extruded corn stover with polyethylene glycol to enhance enzymatic hydrolysis: optimization, kinetics, and mechanism of action. BioEnerg Res 5:424–438

    Article  Google Scholar 

  12. Zheng Y, Pan Z, Zhang R (2008) Non-ionic surfactants and noncatalytic protein treatment on enzymatic hydrolysis of pretreated creeping wild ryegrass. Appl Biochem Biotechnol 146:231–248

    Article  CAS  PubMed  Google Scholar 

  13. Stenberg K, Tengborg C, Galbe M, Zacchi G, Palmqvist E, HahnHagredal B (1998) Recycling of process stream in ethanol production from softwood based on enzymatic hydrolysis. Appl Biochem Biotechnol 70–72:697–708

    Article  PubMed  Google Scholar 

  14. Hoshino E, Tanaka A (2003) Enhancement of enzymatic catalysis of Bacillus amyloliquefaciens α-amylase by nonionic surfactant micelles. J Surfactant Deterg 6:299–303

    Article  CAS  Google Scholar 

  15. Lindhoud S (2009) Polyelectrolyte complex micelles as wrapping for enzymes. Thesis, van Wageningen Universiteit

  16. Maobing T, Zheng X, Paice M, McFarlane P, Saddler JN (2009) Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification and fermentation pretreated lodgepole pine. Biotechnol Prog 25:1122–1128

    Article  Google Scholar 

  17. Helle SS, Duff SJB, Copper DG (1993) Effect of surfactants on cellulose hydrolysis. Biotechnol Bioeng 42:611–617

    Article  CAS  PubMed  Google Scholar 

  18. Castanon M, Wilke CR (1981) Effect of the surfactant Tween 80 on enzymatic hydrolysis of newspaper. Biotechnol Bioeng 23:1365–1372

    Article  CAS  Google Scholar 

  19. Bin Y, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrate. Wiley InterScience 94:611–617

    Google Scholar 

  20. Sangtian Y, An LI, Hao Z, Mingfang L, Xinhui X (2006) Effects of ionic surfactants on bacterial luciferase and α-amylase. Chin J Chem Eng 17:829–834

    Google Scholar 

  21. Szleifer I (1997) Polymers and proteins: interactions at interfaces. Curr Opin Solid State Mater Sci 2:337–344

    Article  CAS  Google Scholar 

  22. Kim MH, Lee SB, Ryu DDY (1982) Surface deactivation of cellulose and its prevention. Enzyme Microb Technol 4:99–103

    Article  CAS  Google Scholar 

  23. Kurakake M, Ooshima H, Kato J, Harano Y (1994) Pretreatment of bagasse by non-ionic surfactant for the enzymatic hydrolysis. Bioresour Technol 49:247–251

    Google Scholar 

  24. Qing Q, Yang B, Wyman CE (2010) Impact of surfactants on pretreatment of corn stover. Bioresour Technol 101:5941–5951

    Article  CAS  PubMed  Google Scholar 

  25. Seo DJ, Fujito H, Sakoda A (2011) Effects of a non-ionic surfactant, Tween 20, on adsorption/desorption of saccharification enzymes onto/from lignocelluloses and saccharification rate. Adsorption 17:813–822

    Article  CAS  Google Scholar 

  26. Ahl PL et al (1997) Enhancement of the in vivo circulation lifetime of L-alpha-line liposomes: importance of liposomal aggregation versus complement opsonization. Biochim Biophys Acta 1329:370–382

    Article  CAS  PubMed  Google Scholar 

  27. Lu KW, Pérez-Gil J, Taeusch HW (2009) Kinematic viscosity of therapeutic pulmonary surfactants with added polymers. Biochim Biophys Acta 1788:632–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Yamada Y, Kuboi R, Komasawa I (1993) Increased activity of Chromobacterium viscosum lipase in aerosol OT reverse micelles in the presence of nonionic surfactants. Biotechnol Prog 9:468–472

    Article  CAS  PubMed  Google Scholar 

  29. Hayashi Y, Talukder MMR, Wu J, Takeyama T, Kawanishi T, Shimizu NJ (2001) Increased activity of Chromobacterium viscosum lipase in AOT reverse micelles in the presence of short chain methoxypolyethylene glycol. J Chem Technol Biotechnol 76:844–850

    Article  CAS  Google Scholar 

  30. Talunder MM, Takayama T, Hayashi Y, Wu JC, Kawanishi T, Shimizu N, Ogino C (2003) Improvement of enzyme activity and stability by adding of low molecular weight polyethylene glycol to sodium bis(2-ethyl-l-hexyl) sulfosuccinate/isooctane reverse micelles. Appl Biochem Biotechnol 110:101–111

    Article  Google Scholar 

  31. Moghimi SM, Patel HM (1989) Serum opsonins and phagocytosis of saturated and unsaturated phospholipid liposomes. Biochim Biophys Acta 984:384–387

    Article  CAS  PubMed  Google Scholar 

  32. Sheth SR, Leckband D (1997) Measurements of attractive forces between proteins and end-grafted poly(ethylene glycol) chains. Proc Natl Acad Sci U S A 94:8399–8404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Vert M, Domurado D (2000) Poly(ethylene glycol): protein-repulsive or albumin-compatible. J Biomaterials Sci Polym Edn 11:1307–1317

    Article  CAS  Google Scholar 

  34. Gupta R, Lee YY (2010) Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide. Biotechnol Prog 26:1180–1186

    Google Scholar 

  35. Karunanithy C, Muthukumarappan K (2011) Optimization of corn stover and extruder parameters for enzymatic hydrolysis using response surface methodology. Biol Eng 3(2):73–95

    Google Scholar 

  36. Eckard AD, Muthukumarappan K, Gibbons W (2012) Modeling of pretreatment condition of extrusion pretreated prairie cordgrass and corn stover with polyoxyethylen (20) sorbitan monolaurate. Appl Biochem Biotechnol 167:377–393

    Article  CAS  PubMed  Google Scholar 

  37. Chundawat SP, Venkatesh B, Dale BE (2006) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96:219–231

    Article  Google Scholar 

  38. Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962

    Article  CAS  PubMed  Google Scholar 

  39. Dong A, Jones LS, Kewin BA, Krishnan S (2006) Secondary structure of proteins adsorbed onto aluminium hydroxide: infrared spectroscopic analysis of proteins from solution concentrations. Anal Biochem 351:282–289

    Google Scholar 

  40. Dong A, Huang P, Caughy WS (1994) Infrared methods for study of hemoglobin reactions and structures. Methods Enzymol 232:139–175

    Article  CAS  PubMed  Google Scholar 

  41. Dong A, Huang P, Caughy WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29:3303–3308

    Article  CAS  PubMed  Google Scholar 

  42. Kong J, YU S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39:549–559

    Article  CAS  PubMed  Google Scholar 

  43. Biasutti MA, Abuin EB, Silber JJ, Correa NM, Lissi EA (2008) Kinetics of reactions catalyzed by enzymes in solutions of surfactants. Adv Colloid Interface Sci 136:1–24

    Article  CAS  PubMed  Google Scholar 

  44. Chen N, Fan JB, Xiang J, Chen J, Liang Y (2006) Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles. Biochim Biophys Acta 1764:1029–1035

    Article  CAS  PubMed  Google Scholar 

  45. Rahman RNZA, Geok LP, Basri M, Salleh AB (2006) An organic solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: enzyme purification and characterization. Enzym Microb Technol 39:1484–1491

    Article  Google Scholar 

  46. Geok LP, Nyonya C, Abdul Razak CN, Abd Rahman RNZ, Basri M, Salleh AB (2003) Isolation and screening of an extracellular organic solvent-tolerant protease producer. Biochem Eng J 13:73–77

    Article  CAS  Google Scholar 

  47. Liu H, Zhu JY (2010) Eliminating inhibition of enzymatic hydrolysis by lignosulfonate in unwashed sulfite-pretreated aspen using metal salts. Bioresour Technol 101:9120–9127

    Article  CAS  PubMed  Google Scholar 

  48. Li J, Li S, Fan C, Yan Z (2011) The mechanism of poly(ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose. Colloid Surf B: Biointerfaces 89:203–120

    Article  PubMed  Google Scholar 

  49. Ericksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect on enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31:353–364

    Article  Google Scholar 

  50. Abuin EB, Scaiano JC (1984) Exploratory study of the effect of polyelectrolyte surfactant aggregates on photochemical behavior. J Am Chem Soc 106:6274

    Article  CAS  Google Scholar 

  51. Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 111(3):171–199

    Article  Google Scholar 

  52. Lee JH, Lee HB, Andrade JD (1995) Blood compatibility of polyethylene oxide surfaces. Prog Polym Sci 20:1043–1079

    Article  CAS  Google Scholar 

  53. Molineux G (2002) Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treat Rev 28:13–16

    Article  CAS  PubMed  Google Scholar 

  54. Tirosh O, Barenholz Y, Katzhender J, Priev A (1998) Hydration of polyethylene glycol-grafted liposomes. Biophys J 74:1371–1379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Leiwa OW, Quina FH (1994) Photophysical probe studies of polymer–detergent interactions. J Braz Chem 6:173–178

    Google Scholar 

  56. Guo W, Sun YW, Luo GS, Wang YJ (2005) Interaction of PEG with ionic surfactant SDS to form template for mesoporous material. Colloids Surf A: Physicochem Eng Asp 252:7–77

    Article  Google Scholar 

  57. Zhang Y, Zhang Y, Tang L (2011) Effect of PEG 4000 on cellulose catalysis in the lignocellulose saccharification process. J Chem Technol Biotechnol 86:115–120

    Google Scholar 

  58. Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340:97–106

    Article  CAS  PubMed  Google Scholar 

  59. Faix O, Beinhoff O (1988) FTIR spectra of milled wood lignins and lignin polymer models (DHP's) with enhanced resolution obtained by deconvolution. J Wood Chem Technol 8:505–522

    Article  CAS  Google Scholar 

  60. Kristensen JB, Thygesen LG, Felby C, Jorgensen H, Elder T (2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels 1:5–13

    Article  PubMed Central  PubMed  Google Scholar 

  61. Stewart D, Yahiaoui N, McDougall GJ, Myton K, Marque C, Boudet AM, Haigh J (1997) Fourier transform infrared and Raman spectroscopic evidence for the incorporation of cinnamaldehydes into the lignin of transgenic tobacco (Nicotiana tabacum L.) plants with reduced expression of cinnamyl alcohol dehydrogenase. Planta 201:311–318

    Article  CAS  PubMed  Google Scholar 

  62. Kaar WK, Holtzapple MT (1998) Benefits from Tween during enzymatic hydrolysis of corn stover. Biotechnol Bioeng 59:419–427

    Article  CAS  PubMed  Google Scholar 

  63. Börjesson J, Engqvist M, Slipos B, Tjerneld F (2007) Effect of polyethylene glycol on enzymatic hydrolysis and adsorption of cellulose enzymes to pretreated lignocellulose. Enzyme Microb Technol 41:186–195

    Article  Google Scholar 

  64. Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Colloid Interface Sci 110:75–95

    Article  CAS  PubMed  Google Scholar 

  65. Viparelli P, Alfani F, Cantarella M (1999) Models for enzyme superactivity in aqueous solutions of surfactants. Biochem J 344:765–773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Mizutani C, Sethumadhavan K, Howley P (2002) Effect of a nonionic surfactant on Trichoderma cellulase treatments of regenerated cellulose and cotton yarns. Cellulose 9:83–89

    Article  CAS  Google Scholar 

  67. Roach LA (2009) The casein micelle as an encapsulation system for triclosan: methods of micelle dissociation, encapsulation, release, and in vitro delivery. University of Tennessee–Knoxville

  68. Sonati S, Appu Rao AG (1993) Kinetic and structural studies on the interaction of surfactants with lipoxygenase L1 from soybeans (Glycine max). J Agric Food Chem 41:366–371

    Article  Google Scholar 

  69. Xiang J, Fan JB, Chen N, Liang CY (2006) Interaction of cellulase with sodium dodecyl sulfate at critical micelle concentration level. Colloids Surf B Biointerfaces 49:175–180

    Google Scholar 

Download references

Acknowledgments

The authors thank the Agricultural Experiment Station, South Dakota State University, and the North Central Sun Grant Center, Brookings, South Dakota, and US Department of Energy, Golden, CO (grant no. DE-FG36-08GO88073) for funding, facilities, equipment and supplies.

Conflict of interest

The authors of this work have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anahita D. Eckard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckard, A.D., Muthukumarappan, K. & Gibbons, W. The Role of Polymeric Micelles on Chemical Changes of Pretreated Corn Stover, Cellulase Structure, and Adsorption. Bioenerg. Res. 7, 389–407 (2014). https://doi.org/10.1007/s12155-013-9379-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9379-3

Keywords

Navigation