Skip to main content

Advertisement

Log in

What is a good control group?

  • Technical Report
  • Published:
International Journal for Ion Mobility Spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ligor M et al (2009) Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. Clin Chem Lab Med 47(5):550–560

    Article  CAS  Google Scholar 

  2. Buszewski B et al (2009) Analysis of exhaled breath from smokers, passive smokers and non-smokers by solid-phase microextraction gas chromatography/mass spectrometry. Biomed Chromatogr 23(5):551–556

    Article  CAS  Google Scholar 

  3. Ligor T et al (2008) The analysis of healthy volunteers’ exhaled breath by the use of solid-phase microextraction and GC-MS. J Breath Res 2:1–8

    Article  Google Scholar 

  4. Schubert JK et al (2007) Determination of antibiotic drug concentrations in circulating human blood by means of solid phase micro-extraction. Clin Chim Acta 386(1–2):57–62

    Article  CAS  Google Scholar 

  5. Smith D et al (2010) Isoprene levels in the exhaled breath of 200 healthy pupils within the age range 7–18 years studied using SIFT-MS. J Breath Res 4:1–7

    Article  Google Scholar 

  6. Enderby B et al (2009) Concentrations of some metabolites in the breath of healthy children aged 7–18 years measured using selected ion flow tube mass spectrometry (SIFT-MS). J Breath Res 3:1–11

    Article  Google Scholar 

  7. Spanel P, Smith D (2008) Quantification of trace levels of the potential cancer biomarkers formaldehyde, acetaldehyde and propanol in breath by SIFT-MS. J Breath Res 2:1–10

    Article  Google Scholar 

  8. Spanel P, Dryahina K, Smith D (2007) The concentration distributions of some metabolites in the exhaled breath of young adults. J Breath Res 1:1–8

    Google Scholar 

  9. Dryahina K, Polasek M, Spanel P (2004) A selected ion flow tube, SIFT, study of the ion chemistry of H3O+, NO+ and O2+• ions with several nitroalkanes in the presence of water vapour. Int J Mass Spectrom 239:57–65

    Article  CAS  Google Scholar 

  10. Thekedar B et al (2009) Investigations on the variability of breath gas sampling using PTR-MS. J Breath Res 3:1–11

    Article  Google Scholar 

  11. Schwarz K, Filipiak W, Amann A (2009) Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS. J Breath Res 3:1–15

    Google Scholar 

  12. Wisthaler A (2004) PTR-MS: a new tool for the rapid detection and quantification of VOCs in air at ultra-trace levels. Institut für Ionenphysik, Leopold-Franzens-Universität Innsbruck, Innsbruck

    Google Scholar 

  13. Lindinger W, Hansel A, Jordan A (1998) On-Line Monitoring of Volatile Organic Compounds at pptv Levels by Means of Proton-Transfer-Reaction Mass Spectrometry ( PTR-MS). - Medical Applications, Food Control and Environmental Research. Int J Mass Spectrom Ion Process 173:191–241

    Article  CAS  Google Scholar 

  14. Lindinger W, Hansel A, Jordan A (1998) Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem Soc Rev 27:347–354

    Article  CAS  Google Scholar 

  15. Baumbach JI (2006) Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384(5):1059–1070

    Article  CAS  Google Scholar 

  16. Jünger M, Bödeker B, Baumbach JI (2010) Peak assignment in multi-capillary column - ion mobility spectrometry using comparative studies with gas chromatography - mass spectrometry for exhalred breath analysis. Anal Bioanal Chem 396(1):471–482

    Article  Google Scholar 

  17. Maddula S et al (2009) Detection of volatile metabolites of Escherichia coli by multi capillary column coupled ion mobility spectrometry. Anal Bioanal Chem 394(3):791–800

    Article  CAS  Google Scholar 

  18. Baumbach JI (2009) Ion mobility spectrometry coupled with multi-capillary columns for metabolic profiling of human breath. J Breath Res 3:1–16

    Article  Google Scholar 

  19. Bödeker B, Vautz W, Baumbach JI (2008) Peak comparison in MCC/IMS – data – searching for potential biomarkers in human breath data. Int J Ion Mobil Spectrom 11(1):89–93

    Article  Google Scholar 

  20. Baumbach JI, Westhoff M (2006) Ion mobility spectrometry to detect lung cancer and airway infections. Spectrosc Eur 18(6):22–27

    CAS  Google Scholar 

  21. Moseley JT et al (1969) Measurement of transport properties of ions in gases; results for K+ ions in N2. Phys Rev 178(1):234–239

    Article  CAS  Google Scholar 

  22. Harden CS (2004) Ion mobility spectrometry for detection of chemical warfare agents 1960’s to the present. Int J Ion Mobil Spectrom 7(1):30–37

    Google Scholar 

  23. Li F et al (2001) UV-ion mobility spectrometer coupled to mass spectrometer. Int J Ion Mobil Spectrom 4(2):100–103

    Google Scholar 

  24. Bowers WD et al (1981) Trace impurities in solvents commonly used for gas-chromatographic analysis of environmental-samples. J Chromatogr 206(2):279–288

    Article  CAS  Google Scholar 

  25. Eiceman GA, Clement RE, Karasek FW (1979) Analysis of fly-ash from municipal incinerators for trace organic-compounds. Anal Chem 51(14):2343–2350

    Article  CAS  Google Scholar 

  26. Smiths Detection. CAM and IONSCAN. [cited 2008 1 Feb.]; Available from: http://www.smithsdetection.com/

  27. Ewing RG et al (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54(3):515–529

    Article  CAS  Google Scholar 

  28. Webster G (2001) Evolution of IMS technology within the Australian Customs Service. Int J Ion Mobil Spectrom 4(1):65–66

    CAS  Google Scholar 

  29. Keller T et al (1999) Ion mobility spectrometry for the detection of drugs in cases of forensic and criminalistic relevance. Int J Ion Mobil Spectrom 2(1):22–34

    CAS  Google Scholar 

  30. Kanu AB, Hill HH Jr (2007) Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas. Talanta 73(4):692–699

    Article  CAS  Google Scholar 

  31. Kudriavtseva S et al (2004) Detection of drugs of abuse in sweat using ion trap mobility spectrometry. Int J Ion Mobil Spectrom 7(2):39–46

    Google Scholar 

  32. Rasulev UK et al (2001) Atmosphere pressure surface ionization indicator of narcotics. Int J Ion Mobil Spectrom 4(2):121–125

    Google Scholar 

  33. Keller T et al (1998) Detection of methamphetamine, MDMA and MDEA in human hair by means of ion mobility spectrometry (IMS). Int J Ion Mobil Spectrom 1(1):38–42

    CAS  Google Scholar 

  34. Ruzsanyi V et al (2005) Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J Chromatogr A 1084(1–2):145–151

    CAS  Google Scholar 

  35. Ells B et al (2000) Trace level determination of perchlorate in water matrices and human urine using ESI-FAIMS-MS. J Environ Monitor 2(5):393–397

    Article  CAS  Google Scholar 

  36. Baumbach JI et al (2010) Breath discovery based on ion mobility spectrometry and classification and differentiation models for lung diseases. Biomed Tech 55(Suppl. 1):1–249

    Google Scholar 

  37. Karpas Z et al (2002) Diagnosis of vaginal infections by ion mobility spectrometry. Int J Ion Mobil Spectrom 5(3):49–54

    CAS  Google Scholar 

  38. Daviss B (2005) Growing pains for metabolomics. The Scientist 19(8):25–28

    Google Scholar 

  39. Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56(410):273–286

    Article  CAS  Google Scholar 

  40. Maddula S (2005) Volatile metabolite fingerprints of Escherichia coli, in Dept. of biochemical and chemical engineering. University Dortmund, Dortmund, p 52

    Google Scholar 

  41. Griffin JL, Kauppinen RA (2007) Tumor metabolomics in animal models of human cancer. J Proteome Res 6(2):498–505

    Article  CAS  Google Scholar 

  42. Davies AN, Baumbach JI (2008) Early lung cancer diagnostics by ion mobility spectrometry data handling. Spectrosc Eur 20(5):18–21

    CAS  Google Scholar 

  43. Westhoff M et al (2010) Differentiation of chronic obstructive pulmonary disease (COPD) including lung cancer from healthy control group by breath analysis using ion mobility spectrometry. Int J Ion Mobil Spectrom 13(3–4):131–139

    Article  CAS  Google Scholar 

  44. Bader S (2005) Atemluftüberwachung mittels mikrostrukturierter Ionenbeweglichkeitsspektrometrie: Statistische Analyse zum Auffinden von Biomarkern für Lungenkrebs. In: Fachbereich Statistik. Universität Dortmund, Dortmund, p 113

    Google Scholar 

  45. Kreuder AE et al (2011) Characterization of propofol in human breath of patients undergoing anesthesia. Int J Ion Mobil Spectrom 14(4):167–175

    Article  CAS  Google Scholar 

  46. Perl T et al (2009) Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry. Br J Anaesth 103(6):822–827

    Article  CAS  Google Scholar 

  47. Mosby's Medical Dictionary, 8th ed. (2009) St Louis, MO, Mosby/Elsevier

  48. ICH Harmonised Tripartite Guideline, Choice of Control Group and Related Issues in Clinical Trials (ICH-E10), in international conference on harmonisation of technical requirements for registration of pharmaceuticals for human use

  49. European Medicine Agency (EMA). Regulatory. Human medicines. Secientific guidelines. ICH guidelines. [cited 2012 5th Dec]; Available from: http://www.emea.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_000035.jsp&mid=WC0b01ac0580027645

  50. Pharmaceuticals and Medical Devices Agency (PDMA). International Conference on harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. [cited 2012 5th Dec]; Available from: http://www.pmda.go.jp/ich/ich_index.html

  51. Food and Drug Administration (FDA). Regulatory Information. Import and Export Guidance Documents. [cited 2012 5th Dec]; Available from: http://www.fda.gov/RegulatoryInformation/Guidances/ucm122048.htm.

  52. Bödeker B, Baumbach J (2009) Analytical description of IMS-signals. Int J Ion Mobil Spectrom 12(3):103–108

    Article  Google Scholar 

  53. Bödeker B, Vautz W, Baumbach JI (2008) Peak Finding and Referencing in MCC/IMS - Data. Int J Ion Mobil Spectrom 11(1–4):83–88

    Article  Google Scholar 

  54. Bödeker B, Vautz W, Baumbach JI (2008) Visualisation of MCC/IMS – Data. Int J Ion Mobil Spectrom 11(1):77–82

    Article  Google Scholar 

  55. Cumeras R et al (2012) Stability and alignment of MCC/IMS devices. Int J Ion Mobil Spectrom 15(1):41–46

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the Ministry of Education Science and Technology (MEST) of the Republic of Korea is acknowledged thankfully. Part of the work of this paper has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center (Sonderforschungsberiech) SFB 876 “Providing Information by Resource-Constrained Analysis”, project TB1 “Resource-Constrained Analysis of Spectrometry Data”.

In addition, the work was supported partly by the German Federal Ministry of Economics and Technology based on a decision of the German Bundestag within the project KF2368102AKO.

R. Cumeras gratefully acknowledges support from FPI Fellowship (BES-2008-005267) by the Spanish Ministry of Science and Innovation MICINN-TEC2007-67962-C04 and MICIIN-TEC2010-21357-C05 projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Cumeras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cumeras, R., Figueras, E., Gràcia, I. et al. What is a good control group?. Int. J. Ion Mobil. Spec. 16, 191–198 (2013). https://doi.org/10.1007/s12127-012-0116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-012-0116-y

Keywords

Navigation