Skip to main content
Log in

Characterization of propofol in human breath of patients undergoing anesthesia

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Ion mobility spectrometry coupled to a multi-capillary column (MCC/IMS) was used in anesthesia to detect signals related to Propofol in the breath directly. First time both positive and negative ions were investigated. It was found, that the detection limit in the negative mode is lower as in the positive one. Results of experiments with and without a bolus of Propofol were discussed with respect to kinetic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry, 2nd edn. CRC Press, Taylor & Francis, Boca Raton, p 350

    Book  Google Scholar 

  2. Vautz W, Baumbach JI (2008) Analysis of bio-processes using ion mobility spectrometry. Eng Life Sci 8(1):19–25

    Article  CAS  Google Scholar 

  3. O’Donnell RM, Harrington PdB, Sun X (2007) Applications of ion mobility spectrometry and differential mobility spectrometry in drug screening and quality control of pharmaceuticals

  4. Baumbach JI, et al. (2010) Breath discovery based on ion mobility spectrometry and classification and differentiation models for lung diseases. Biomedizinische Technik 55(Suppl. 1)

  5. Karpas Z et al (2002) Novel application for ion mobility spectrometry: diagnosing vaginal infections through measurement of biogenic amines. Anal Chim Acta 474(1–2):115–123

    Article  CAS  Google Scholar 

  6. Vautz W, Baumbach JI (2008) Exemplar application of multi-capillary column ion mobility spectrometry for biological medical purpose. Int J Ion Mobility Spectrom 11(1):35–42

    Article  CAS  Google Scholar 

  7. Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56(410):273–286

    Article  CAS  Google Scholar 

  8. Maddula S (2005) Volatile metabolite fingerprints of Escherichia coli. In: Dept. of Biochemical and Chemical Engineering. University Dortmund, Dortmund. p. 52

  9. Griffin JL, Kauppinen RA (2007) Tumour metabolomics in animal models of human cancer. J Proteome Res 6(2):498–505

    Article  CAS  Google Scholar 

  10. Mieth M et al (2010) Automated needle trap heart-Cut GC/MS and needle trap comprehensive two-dimensional GC/TOF-MS for breath gas analysis in the clinical environment. Anal Chem 82(6):2541–2551

    Article  CAS  Google Scholar 

  11. Buszewski B et al (2009) Analysis of exhaled breath from smokers, passive smokers and non-smokers by solid-phase microextraction gas chromatography/mass spectrometry. Biomed Chromatogr 23(5):551–556

    Article  CAS  Google Scholar 

  12. Beauchamp J, Kirsch F, Buettner A (2010) Real-time breath gas analysis for pharmacokinetics: monitoring exhaled breath by on-line proton-transfer-reaction mass spectrometry after ingestion of eucalyptol-containing capsules. J Breath Res 4(Copyright (C) 2010 American Chemical Society (ACS). All Rights Reserved.): p. No pp. given

  13. Herbig J et al (2009) On-line breath analysis with PTR-TOF. J Breath Res 3(2):027004/1–027004/10

    CAS  Google Scholar 

  14. Smith D et al (2010) Isoprene levels in the exhaled breath of 200 healthy pupils within the age range 7–18 years studied using SIFT-MS. J Breath Res 4(1):017101/1–017101/7

    Article  CAS  Google Scholar 

  15. Seeley MJ et al (2009) In vitro SIFT-MS validation of a breath fractionating device using a model VOC and ventilation system. J Breath Res 3(016001):7. doi:10.1088/1752-7155/3/1/016001

    Google Scholar 

  16. Horvath I et al (2009) Exhaled biomarkers in lung cancer. Eur Respir J 34(1):261–275

    Article  CAS  Google Scholar 

  17. Dragonieri S et al (2009) An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 64(2):166–170

    Article  Google Scholar 

  18. Silkoff P (2008) History, technical and regulatory aspects of exhaled nitric oxide. J Breath Res 2(3):037001/1–037001/8

    Article  CAS  Google Scholar 

  19. De Lacy Costello B et al (2008) An analysis of volatiles in the headspace of the faeces of neonates. J Breath Res 2(3):037023/1–037023/8

    Google Scholar 

  20. Davies AN, Baumbach JI (2008) Early lung cancer diagnostics by ion mobility spectrometry data handling. Spectrosc Eur 20(5):18–21

    CAS  Google Scholar 

  21. Bader S (2005) Atemluftüberwachung mittels mikrostrukturierter Ionenbeweglichkeitsspektrometrie: statistische Analyse zum Auffinden von Biomarkern für Lungenkrebs, In: Fachbereich Statistik. Universität Dortmund, Dortmund. p. 113

  22. Westhoff M et al (2010) Differentiation of chronic obstructive pulmonary disease (COPD) including lung cancer from healthy control group by breath analysis using ion mobility spectrometry. Int J Ion Mobility Spectrom 13(3–4):131–139

    Article  CAS  Google Scholar 

  23. Baumbach JI, Westhoff M (2006) Ion mobility spectrometry to detect lung cancer and airway infections. Spectrosc Eur 18(6):22–27

    CAS  Google Scholar 

  24. Baumbach JI, et al. (2010) Metabolites in human breath during indursulfase therapy of a patient with hunter disease—first results of time series using MCC/IMS. Biomedizinische Technik 55(Suppl. 1)

  25. Perl T et al (2009) Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry. Br J Anaesth 103(6):822–827

    Article  CAS  Google Scholar 

  26. Perl T, et al. (2010) Propofol in der Atemluft—MCC-Ionen mobilitäts spektrometrie propofol in expired air using MCC-ion mobility spectrometry. Biomedizinische Technik 55(Suppl. 1)

  27. Dawidowicz AL et al (2000) The role of human lungs in the biotransformation of propofol. Anesthesiology 93(4):992–997

    Article  CAS  Google Scholar 

  28. Borsdorf H, Mayer T, Zaresjousheghani M, Eiceman GA (2011) Recent developments in ion mobility spectrometry. Appl Spectrosc Rev 46:472–521

    Article  Google Scholar 

  29. Marquez-Sillero I, Aguilera-Herrador E, Cardenas S, Valcarcel M (2011) Ion-mobility spectrometry for environmental analysis. Trac-Trends Anal Chem 30:677–690

    Article  CAS  Google Scholar 

  30. Armenta S, Alcala M, Blanco M (2011) A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal Chim Acta 703:114–123

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Baumbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreuder, AE., Buchinger, H., Kreuer, S. et al. Characterization of propofol in human breath of patients undergoing anesthesia. Int. J. Ion Mobil. Spec. 14, 167–175 (2011). https://doi.org/10.1007/s12127-011-0080-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-011-0080-y

Keywords

Navigation