Skip to main content
Log in

Detection of volatile metabolites of Escherichia coli by multi capillary column coupled ion mobility spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Detection and immediate quantification of microbial metabolic activities is of high interest in fields as diverse as biotechnology and infection biology. Interestingly, the most direct signals of microbial metabolism, the evolution of volatile metabolites, is largely ignored in the literature, and rather, metabolite concentrations in the microbial surrounding or even disruptive methods for intracellular metabolite measurements (i.e., metabolome analysis) are favored. Here, the development of a multi capillary column coupled ion mobility spectrometer (MCC-IMS) was described for the detection of volatile organic compounds from microbes and the MCC-IMS was used for characterization of metabolic activity of growing Escherichia coli. The MCC-IMS chromatogram of the microbial culture off-gas of the acetone-producing E. coli strain BL21 pLB4 revealed four analytes that positively correlated with growth, which were identified as ethanol, propanone (acetone), heptan-2-one, and nonan-2-one. The occurrence of these analytes was cross-validated by solid-phase micro-extraction coupled with gas chromatography mass spectrometry analysis. With this information in hand, the dynamic relationship between the E. coli biomass concentration and the metabolite concentrations in the headspace was measured. The results suggest that the metabolic pathways of heptan-2-one and nonan-2-one synthesis are regulated independent of each other. It is shown that the MCC-IMS in-line off-gas analysis is a simple method for real-time detection of microbial metabolic activity and discussed its potential for application in metabolic engineering, bioprocess control, and health care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beecher CWW (2003) In: Harrigan GG, Goodacre R (ed) Metaboli profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic, London

    Google Scholar 

  2. Blank LM, Kuepfer L, Sauer U (2005) Genome Biol 6:R49

    Article  Google Scholar 

  3. Fiehn O (2001) Comp Funct Genomics 2:155

    Article  CAS  Google Scholar 

  4. O’Neill HJ, Gordon S, O’Neill MH, Gibbons RD (1988) Clin Chem 34:1613

    PubMed  Google Scholar 

  5. Dunn WB, Bailey NJC, Johnson HE (2005) Analyst 130:606

    Article  CAS  Google Scholar 

  6. Baumbach JI, Eiceman GA (1999) Appl Spectrosc 53:338A

    Article  CAS  Google Scholar 

  7. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry. CRC, Boca Raton

    Book  Google Scholar 

  8. Stach J, Baumbach JI (2002) Int J Ion Mobil Spectrom 5:1

    CAS  Google Scholar 

  9. Baumbach JI (2006) Anal Bioanal Chem 384:1059

    Article  CAS  Google Scholar 

  10. Vautz W, Baumbach JI, Jung J (2004) Int J Ion Mobil Spectrom 7:3

    CAS  Google Scholar 

  11. Schmidt H, Tadjimukhamedov F, Mohrenz IV, Smith GB, Eiceman GA (2004) Anal Chem 76:5208

    Article  CAS  Google Scholar 

  12. Ruzsanyi V, Baumbach JI (2005) Int J Ion Mobil Spectrom 8:5

    CAS  Google Scholar 

  13. Ruzsanyi V, Sielemann S, Baumbach JI (2002) Int J Ion Mobil Spectrom 5:45

    CAS  Google Scholar 

  14. Baumbach JI, Vautz W, Ruzsanyi V, Freitag L (2005) In: Amann A, Smith D (eds) Breath gas analysis for medical diagnostics. World Scientific, Singapore

    Google Scholar 

  15. Baumbach JI, Vautz W, Ruzsanyi V, Freitag L (2005) In: Knäblein J (ed) Modern biopharmaceuticals. WILEY-VCH, Weinheim

    Google Scholar 

  16. Walendzik G, Baumbach JI, Klockow D (2005) Anal Bioanal Chem 382:1842

    Article  CAS  Google Scholar 

  17. Ruzsanyi V, Baumbach JI, Sielemann S, Litterst P, Westhoff M, Freitag L (2005) J Chromatogr A 1084:145

    Article  CAS  Google Scholar 

  18. Bermejo LL, Welker NE, Papoutsakis ET (1998) Appl Environ Microbiol 64:1079

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Atkinson MR, Blauwkamp TA, Bondarenko V, Studitsky V, Ninfa AJ (2002) J Bacteriol 184:5358

    Article  CAS  Google Scholar 

  20. Sielemann S, Baumbach JI, Schmidt H, Pilzecker P (2001) Analytica Chimica Acta 431:293

    Article  CAS  Google Scholar 

  21. Matysik S, Herbarth O, Mueller A (2008) J Microbiol Methods 75:182

    Article  CAS  Google Scholar 

  22. Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Mark TD (2008) Appl Environ Microbiol 74:2179

    Article  CAS  Google Scholar 

  23. Clark DP (1989) FEMS Microbiol Rev 63:223

    CAS  Google Scholar 

  24. Smeland TE, Nada M, Cuebas D, Schulz H (1992) Proc Natl Acad Sci U S A 89:6673

    Article  CAS  Google Scholar 

  25. Feist AM, Palsson BO (2008) Nat Biotech 26:659

    Article  CAS  Google Scholar 

  26. White SW, Zheng J, Zhang Y, Rock CO (2005) Annu Rev Biochem 74:789

    Article  Google Scholar 

  27. Elgaali H, Hamilton-Kemp TR, Newman MC, Collins RW, Yu K, Archbold DD (2002) J Basic Microbiol 42:373

    Article  CAS  Google Scholar 

  28. Hamilton-Kemp T, Newman MC, Collins R, Elgaali H, Yu K, Archbold D (2005) Curr Microbiol 51:82

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by the Ministerium für Innovation, Wissenschaft, Forschung und Technologies des Landes Nordrhein-Westfalen and the Bundesministerium für Bildung und Forschung is gratefully acknowledged. The authors acknowledge the excellent technical support provided by Luzia Seifert, the help of Chandrasekhara Hariharan with MCC-IMS measurements of reference substances, and the technical support for the GC-MS measurements and the fruitful discussions from Jürgen Nolte and Rita Fobbe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Ingo Baumbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddula, S., Blank, L.M., Schmid, A. et al. Detection of volatile metabolites of Escherichia coli by multi capillary column coupled ion mobility spectrometry. Anal Bioanal Chem 394, 791–800 (2009). https://doi.org/10.1007/s00216-009-2758-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2758-0

Keywords

Navigation