Skip to main content
Log in

Peak finding and referencing in MCC/IMS-data

  • Software Applications
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Major questions of all investigations of analytes using ion mobility spectrometer (IMS) are peak finding and in case of proper finding the reliable referencing. In case of rather complex mixtures like human breath or water impurities, automatic procedures should be found to support peak finding and referencing. A visualisation software tool will be described bringing the summarised results of peak finding methods and the reference lists used as input to data bases together in a single system. The details of the software developed are described briefly and the procedures behind are referenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Borsdorf H, Eiceman GA (2006) Ion mobility spectrometry: principles and applications. Appl Spectrosc Rev 41:323–375

    Article  CAS  Google Scholar 

  2. Hill HH Jr, Siems WF, St. Louis RH, McMinn DG (1990) Ion mobility spectrometry. Anal Chem 62:1201A–1209A

    Article  CAS  Google Scholar 

  3. Creaser CS et al (2004) Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. Analyst 129:984–994

    Article  CAS  Google Scholar 

  4. Eiceman GA, Karpas Z (1994) Ion mobility spectrometry. CRC, Boca Raton, pp 1–228

    Google Scholar 

  5. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry, vol. 1, 1st edn. CRC, Boca Raton

    Google Scholar 

  6. Stach J, Baumbach JI (2002) Ion mobility spectrometry-basic elements and applications. Int J Ion Mobil Spec 5:1–21

    CAS  Google Scholar 

  7. Glasser ML (1988) Peak shape analysis for ion mobility spectroscopy. J Appl Phys 63:4823–4831

    Article  Google Scholar 

  8. Goubran RA, Lawrence AH (1991) Experimental signal analysis in ion mobility spectrometry. Int J Mass Spectrom Ion Proc 104:163–178

    Article  CAS  Google Scholar 

  9. Davis DM, Kroutil RT (1990) Application of digital filters to process data for ion mobility spectrometry. Anal Chim Acta 232:261–266

    Article  CAS  Google Scholar 

  10. Davis DM, Kroutil RT (1992) Advanced signal processing and data analysis techniques for ion mobility spectrometry. In: Jurs PC (ed) Comput.-Enhanced Anal. Spectrosc. vol. 3. Plenum, New York, pp 261–280

    Google Scholar 

  11. Bell SE, Mead WC, Jones RD, Eiceman GA, Ewing RG (1993) Connectionist hyperprism neural network for the analysis of ion mobility spectra—an empirical evaluation. J Chem Inf Comp Sci 33:609–615

    CAS  Google Scholar 

  12. Boger Z, Karpas Z (1994) Application of neural networks for interpretation of ion mobility and x-ray fluorescence spectra. Anal Chim Acta 292:243–251

    Article  CAS  Google Scholar 

  13. Baumbach JI, Davies A, v.Irmer A, Lampen P (1994) Exchange, interpretation, and database-search of ion mobility spectra supported by data format JCAMP-DX. 3rd International Workshop on IMS, Galveston, TX, Oct. 16–19, 1994, 94–111

  14. Cai C, Harrington P (1997) Two-dimensional fourier compression. Anal Chem 69:4249–4255

    Article  CAS  Google Scholar 

  15. Baumbach JI, Lampen P, Davies AN (1998) In Stach J (ed) Proc. 6th Int. Workshop ion mobility spectrum, pp 238–243

  16. Harrington P de B, Rauch PJ, Tong JY, Davis DM (1998) Chemometric tools for advantageous use of dynamic IMS data. Proc. 6th Int. Workshop Ion Mobility Spectrom 281–303

  17. Bell S, Nazarov E, Wang YF, Eiceman GA (1999) Classification of ion mobility spectra by functional groups using neural networks. Anal Chem Acta 394:121–133

    Article  CAS  Google Scholar 

  18. Davies AN, Baumbach JI, Lampen P, Schmidt H (2001) Finalisation of a IUPAC/JCAMP-DX data transfer standard for ion mobility spectrometry data. Int J Ion Mobil Spec 4:84–108

    CAS  Google Scholar 

  19. Sielemann S, Horvath T, Teepe M, Baumbach JI (2002) Data acquisition, data analysis and data base for the new miniaturized IMS µIMS 700. Int J Ion Mobil Spec 5:19–22

    CAS  Google Scholar 

  20. Urbas AA, Harrington P (2001) Two-dimensional wavelet compression of ion mobility spectra. Analytica Chimica Acta 446:393–412

    Article  CAS  Google Scholar 

  21. Cao LB, Harrington PD, Liu JD (2005) SIMPLISMA and ALS applied to two-way nonlinear wavelet compressed ion mobility spectra of chemical warfare agent simulants. Analytical Chemistry 77:2575–2586

    Google Scholar 

  22. Raatikainen O et al (2005) Multivariate modelling of fish freshness index based on ion mobility spectrometry measurements. Analytica Chimica Acta 544:128–134

    Article  CAS  Google Scholar 

  23. Robinson EW, Sellon RE, Williams ER (2007) Peak deconvolution in high-field asymmetric waveform ion mobility spectrometry (FAIMS) to characterize macromolecular conformations. Int J Mass Spectrom 259:87–95

    Article  CAS  Google Scholar 

  24. McLean JA, Russell DH, Egan TF, Ugarov MV, Schultz JA (2006) Multiplex data acquisition modes for ion mobility-mass spectrometry-Patent US 2006024720- USA, 36 pp

  25. Eiceman GA et al (2006) Pattern recognition analysis of differential mobility spectra with classification by chemical family. Anal Chim Acta 579:1–10

    Article  CAS  Google Scholar 

  26. Cao L, Harrington PD, Harden CS, McHugh VM, Thomas MA (2004) Nonlinear wavelet compression of ion mobility spectra from ion mobility spectrometers mounted in an unmanned aerial vehicle. Analytical Chemistry 76:1069–1077

    Article  CAS  Google Scholar 

  27. Chen G, Harrington PDB (2003) SIMPLISMA applied to two-dimensional wavelet compressed ion mobility spectrometry data. Anal Chim Acta 484:75–91

    Article  CAS  Google Scholar 

  28. Davies AN, Baumbach JI (1999) Multidimensional data analysis-quantifying the hidden dimension. Spectroscopy Europe 11:23–24

    CAS  Google Scholar 

  29. Baumbach JI, Eiceman GA (1999) Ion mobility spectrometry: arriving on site and moving beyond a low profile. Appl Spectrosc 53:338A–355A

    Article  CAS  Google Scholar 

  30. Westhoff M, Litterst P, Freitag L, Baumbach JI (2007) Ion mobility spectrometry in the diagnosis of sarcoidosis: results of a feasibility study. J Physiol Pharmacol 58:739–751

    Google Scholar 

  31. Baumbach JI, Westhoff M (2006) Ion mobility spectrometry to detect lung cancer and airway infections. Spectroscopy Europe 18:22–27

    CAS  Google Scholar 

  32. Baumbach JI (2006) Process analysis using ion mobility spectrometry. Analytical and Bioanalytical Chemistry 384:1059–1070

    Article  CAS  Google Scholar 

  33. Westhoff M et al (2005) Ion mobility spectrometry: a new method for the detection of lung cancer and airway infection in exhaled air? First results of a pilot study. Chest 128:155S

    Google Scholar 

  34. Ruzsanyi V et al (2005) Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J Chrom 1084:145–151

    Article  CAS  Google Scholar 

  35. Ruzsanyi V, Baumbach J (2005) Anaylsis of human breath using IMS. Int J Ion Mobil Spec 8:5–7

    Article  CAS  Google Scholar 

  36. Baumbach J et al (2007) IMS2—an integrated medical software system for early lung cancer detection using ion mobility spectrometry data of human breath. Journal of Integrative Bioinformatics 4(75):71–12

    Article  Google Scholar 

  37. Bader S, Urfer W, Baumbach JI (2007) Reduction of ion mobility spectrometry data by clustering characteristic peak structures. J Chemometr 20:128–135

    Article  Google Scholar 

  38. Vautz W, Baumbach JI (2008) Exemplar application of multi-capillary column ion mobility spectrometry for biological medical purpose. Int J Ion Mobil Spec 11. doi:10.1007/s12127-008-0007-4

  39. Bader S, Urfer W, Baumbach JI (2008) Preprocessing of ion mobility spectra by lognormal detailing and wavelet transform. Int J Ion Mobil Spec 11. doi:10.1007/s12127-008-0005-6

  40. Bader S, Urfer W, Baumbach J (2005) Processing ion mobility spectrometry data to characterize group differences in a multiple class comparison. Int J Ion Mobil Spec 8:1–4

    Article  Google Scholar 

  41. Bader S (2008) Identification and quantification of peaks in spectrometric data. In: Faculty Statistics, Vol. PhD 171 (Technical University of Dortmund, Dortmund)

  42. Davies AN, Baumbach JI (2008) Early lung cancer diagnostics by ion mobility spectrometry data handling. Spectroscopy Europe 20:18–21

    Google Scholar 

Download references

Acknowledgements

The financial support of the European Union, the Bundesministerium für Bildung und Forschung and the Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes NRW is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram Bödeker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bödeker, B., Vautz, W. & Baumbach, J.I. Peak finding and referencing in MCC/IMS-data. Int. J. Ion Mobil. Spec. 11, 83–87 (2008). https://doi.org/10.1007/s12127-008-0012-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-008-0012-7

Keywords

Navigation