Skip to main content
Log in

Myco-remediation of Chlorinated Pesticides: Insights Into Fungal Metabolic System

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Synthetic chemicals including organochlorine pesticides pose environment and health hazard due to persistent and bio-accumulation property. Majority of them are recognized as endocrine disruptors. Fungi are ubiquitous in nature and employs efficient enzymatic machinery for the biotransformation and degradation of toxic, recalcitrant pollutants. This review critically discusses the organochlorine biotransformation process mediated by fungi and highlights the role of enzymatic system responsible for biotransformation, especially distribution of dehalogenase homologs among fungal classes. It also explores the potential use of fungal derived biomaterial, mainly chitosan as an adsorbing biomaterial for pesticides and heavy metals removal. Further, prospects of employing fungus to over-come the existing bioremediation limitations are discussed. The study highlights the potential scope of utilizing fungi for initial biotransformation purposes, preceding final biodegradation by bacterial species under environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9:90–100. https://doi.org/10.1515/intox-2016-0012

    Article  CAS  PubMed  Google Scholar 

  2. Jit S, Dadhwal M, Kumari H et al (2011) Evaluation of hexachlorocyclohexane contamination from the last lindane production plant operating in India. Environ Sci Pollut Res 18:586–597. https://doi.org/10.1007/s11356-010-0401-4

    Article  CAS  Google Scholar 

  3. Remucal CK (2014) The role of indirect photochemical degradation in the environmental fate of pesticides: a review. Environ Sci Process Impacts 16:628–653. https://doi.org/10.1039/c3em00549f

    Article  CAS  PubMed  Google Scholar 

  4. Rajmohan KS, Chandrasekaran R, Varjani S (2020) A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian J Microbiol 60:125–138. https://doi.org/10.1007/s12088-019-00841-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu L, Liu Y, Liu X et al (2019) Isotope fractionation approach to characterize the reactive transport processes governing the fate of hexachlorocyclohexanes at a contaminated site in India. Environ Int 132:105036. https://doi.org/10.1016/j.envint.2019.105036

    Article  CAS  PubMed  Google Scholar 

  6. Limaye A, Kashyap RS, Kapley A et al (2008) Modulation of signal transduction pathways in lymphocytes due to sub-lethal toxicity of chlorinated phenol. Toxicol Lett 179:23–28. https://doi.org/10.1016/j.toxlet.2008.03.016

    Article  CAS  PubMed  Google Scholar 

  7. Yilmaz B, Terekeci H, Sandal S, Kelestimur F (2020) Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord 21:127–147

    Article  CAS  Google Scholar 

  8. Patel SKS, Gupta RK, Kim SY et al (2021) Rhus vernicifera laccase immobilization on magnetic nanoparticles to improve stability and its potential application in bisphenol A degradation. Indian J Microbiol 61:45–54. https://doi.org/10.1007/s12088-020-00912-4

    Article  CAS  PubMed  Google Scholar 

  9. Patel SKS, Gupta RK, Das D et al (2020) Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. J Clean Prod 287:125037. https://doi.org/10.1016/j.jclepro.2020.125037

    Article  CAS  Google Scholar 

  10. Singh P, Jain R, Srivastava N et al (2017) Current and emerging trends in bioremediation of petrochemical waste: a review. Crit Rev Environ Sci Technol 47:155–201. https://doi.org/10.1080/10643389.2017.1318616

    Article  Google Scholar 

  11. Rana RS, Singh P, Kandari V et al (2017) A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective. Appl Water Sci 7:1–12. https://doi.org/10.1007/s13201-014-0225-3

    Article  CAS  Google Scholar 

  12. Patel SKS, Lee JK, Kalia VC (2017) Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Indian J Microbiol 57:171–176. https://doi.org/10.1007/s12088-017-0643-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar P, Sharma R, Ray S et al (2015) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 182:383–388. https://doi.org/10.1016/j.biortech.2015.01.138

    Article  CAS  PubMed  Google Scholar 

  14. Nayak T, Panda AN, Kumari K et al (2020) Comparative genomics of a paddy field bacterial isolate Ochrobactrum sp. CPD-03: analysis of chlorpyrifos degradation potential. Indian J Microbiol 60:325–333. https://doi.org/10.1007/s12088-020-00864-9

    Article  CAS  PubMed  Google Scholar 

  15. Gaur VK, Bajaj A, Regar RK et al (2019) Rhamnolipid from a Lysinibacillus sphaericus strain IITR51 and its potential application for dissolution of hydrophobic pesticides. Bioresour Technol 272:19–25. https://doi.org/10.1016/j.biortech.2018.09.144

    Article  CAS  PubMed  Google Scholar 

  16. Singh T, Singh DK (2019) Lindane degradation by root epiphytic bacterium Achromobacter sp. strain A3 from Acorus calamus and characterization of associated proteins. Int J Phytoremed 21:419–424. https://doi.org/10.1080/15226514.2018.1524835

    Article  CAS  Google Scholar 

  17. Bajaj A, Kumar A, Yadav S et al (2016) Isolation and characterization of a novel Gram-negative bacterium Chromobacterium alkanivorans sp. Nov., strain IITR-71T degrading halogenated alkanes. Int J Syst Evol Microbiol 66:5228–5235. https://doi.org/10.1099/ijsem.0.001500

    Article  CAS  PubMed  Google Scholar 

  18. Qu J, Xu Y, Ai GM et al (2015) Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil. J Environ Manag 161:350–357. https://doi.org/10.1016/j.jenvman.2015.07.025

    Article  CAS  Google Scholar 

  19. Bajaj A, Mayilraj S, Mudiam MKR et al (2014) Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT). Bioresour Technol 167:398–406. https://doi.org/10.1016/j.biortech.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  20. Manickam N, Singh NK, Bajaj A et al (2014) Bacillus mesophilum sp. nov., strain IITR-54T, a novel 4-chlorobiphenyl dechlorinating bacterium. Arch Microbiol 196:517–523. https://doi.org/10.1007/s00203-014-0988-9

    Article  CAS  PubMed  Google Scholar 

  21. Kong L, Zhu S, Zhu L et al (2013) Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. J Environ Sci (China) 25:2257–2264. https://doi.org/10.1016/S1001-0742(12)60288-5

    Article  CAS  Google Scholar 

  22. Cao X, Yang C, Liu R et al (2013) Simultaneous degradation of organophosphate and organochlorine pesticides by Sphingobium japonicum UT26 with surface-displayed organophosphorus hydrolase. Biodegradation 24:295–303. https://doi.org/10.1007/s10532-012-9587-0

    Article  CAS  PubMed  Google Scholar 

  23. Manickam N, Bajaj A, Saini HS, Shanker R (2012) Surfactant mediated enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingomonas sp. NM05. Biodegradation 23:673–682. https://doi.org/10.1007/s10532-012-9543-z

    Article  CAS  PubMed  Google Scholar 

  24. Bajaj A, Pathak A, Mudiam MR et al (2010) Isolation and characterization of a Pseudomonas sp. strain IITR01 capable of degrading α-endosulfan and endosulfan sulfate. J Appl Microbiol 109:2135–2143. https://doi.org/10.1111/j.1365-2672.2010.04845.x

    Article  CAS  PubMed  Google Scholar 

  25. Nawab A, Aleem A, Malik A (2003) Determination of organochlorine pesticides in agricultural soil with special reference to γ-HCH degradation by Pseudomonas strains. Bioresour Technol 88:41–46. https://doi.org/10.1016/S0960-8524(02)00263-8

    Article  CAS  PubMed  Google Scholar 

  26. Kwon GS, Sohn HY, Shin KS et al (2005) Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Appl Microbiol Biotechnol 67:845–850. https://doi.org/10.1007/s00253-004-1879-9

    Article  CAS  PubMed  Google Scholar 

  27. Ahmad KS (2020) Remedial potential of bacterial and fungal strains (Bacillus subtilis, Aspergillus niger, Aspergillus flavus and Penicillium chrysogenum) against organochlorine insecticide Endosulfan. Folia Microbiol (Praha) 65:801–810. https://doi.org/10.1007/s12223-020-00792-7

    Article  CAS  Google Scholar 

  28. Salam JA, Das N (2014) Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: kinetic study, enzyme analysis and biodegradation pathway. World J Microbiol Biotechnol 30:1301–1313. https://doi.org/10.1007/s11274-013-1551-6

    Article  CAS  PubMed  Google Scholar 

  29. Rigas F, Papadopoulou K, Dritsa V, Doulia D (2007) Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J Hazard Mater 140:325–332. https://doi.org/10.1016/j.jhazmat.2006.09.035

    Article  CAS  PubMed  Google Scholar 

  30. Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600. https://doi.org/10.1128/aem.62.2.593-600.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sagar V, Singh DP (2011) Biodegradation of lindane pesticide by non white- rots soil fungus Fusarium sp. World J Microbiol Biotechnol 27:1747–1754. https://doi.org/10.1007/s11274-010-0628-8

    Article  CAS  Google Scholar 

  32. Zheng F, An Q, Meng G et al (2017) A novel laccase from white rot fungus Trametes orientalis: purification, characterization, and application. Int J Biol Macromol 102:758–770. https://doi.org/10.1016/j.ijbiomac.2017.04.089

    Article  CAS  PubMed  Google Scholar 

  33. Olajuyigbe FM, Fatokun CO (2017) Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05. Int J Biol Macromol 94:535–543. https://doi.org/10.1016/j.ijbiomac.2016.10.037

    Article  CAS  PubMed  Google Scholar 

  34. Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56:247–264. https://doi.org/10.1007/s12088-016-0584-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiao M, Lv S (2019) Self-assembled regenerated silk fibroin microsphere-embedded Fe3O4 magnetic nanoparticles for immobilization of zymolyase. ACS Omega 4:21612–21619. https://doi.org/10.1021/acsomega.9b03491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shukla P (2019) Synthetic biology perspectives of microbial enzymes and their innovative applications. Indian J Microbiol 59:401–409. https://doi.org/10.1007/s12088-019-00819-9

    Article  PubMed  PubMed Central  Google Scholar 

  37. Patel SKS, Choi H, Lee JK (2019) Multimetal-based inorganic-protein hybrid system for enzyme immobilization. ACS Sustain Chem Eng 7:13633–13638. https://doi.org/10.1021/acssuschemeng.9b02583

    Article  CAS  Google Scholar 

  38. Patel SKS, Otari SV, Li J et al (2018) Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J Hazard Mater 347:442–450. https://doi.org/10.1016/j.jhazmat.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  39. Patel SKS, Choi SH, Kang YC, Lee JK (2016) Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8:6728–6738. https://doi.org/10.1039/c6nr00346j

    Article  CAS  PubMed  Google Scholar 

  40. Vijgen J, Abhilash PC, Li YF et al (2011) Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res 18:152–162. https://doi.org/10.1007/s11356-010-0417-9

    Article  CAS  Google Scholar 

  41. Zhang W, Lin Z, Pang S et al (2020) Insights into the biodegradation of lindane (γ-Hexachlorocyclohexane) using a microbial system. Front Microbiol 11:1–12. https://doi.org/10.3389/fmicb.2020.00522

    Article  Google Scholar 

  42. Xiao P, Kondo R (2020) Potency of Phlebia species of white rot fungi for the aerobic degradation, transformation and mineralization of lindane. J Microbiol 58:395–404. https://doi.org/10.1007/s12275-020-9492-x

    Article  CAS  PubMed  Google Scholar 

  43. Saez JM, Bigliardo AL, Raimondo EE et al (2018) Lindane dissipation in a biomixture: effect of soil properties and bioaugmentation. Ecotoxicol Environ Saf 156:97–105. https://doi.org/10.1016/j.ecoenv.2018.03.011

    Article  CAS  PubMed  Google Scholar 

  44. Inam ul Haq SSM, Karam Ahad IA, Nazia Rafiq AR, (2015) Bioremediation potential of white rot fungi, Pleurotus spp against organochlorines. J Bioremed Biodegrad 6:1–6. https://doi.org/10.4172/2155-6199.1000308

    Article  CAS  Google Scholar 

  45. Kaur H, Kapoor S, Kaur G (2016) Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Environ Monit Assess 188:588. https://doi.org/10.1007/s10661-016-5606-7

    Article  CAS  PubMed  Google Scholar 

  46. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science (80-) 228:1434–1436. https://doi.org/10.1126/science.3925550

    Article  CAS  Google Scholar 

  47. Raina V, Suar M, Singh A et al (2008) Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soils via inoculation with Sphingobium indicum B90A. Biodegradation 19:27–40. https://doi.org/10.1007/s10532-007-9112-z

    Article  CAS  PubMed  Google Scholar 

  48. Sharma P, Raina V, Kumari R et al (2006) Haloalkane dehalogenase LinB is responsible for β- and δ-hexachlorocyclohexane transformation in Sphingobium indicum B90A. Appl Environ Microbiol 72:5720–5727. https://doi.org/10.1128/AEM.00192-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abdul Salam J, Lakshmi V, Das D, Das N (2013) Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil. World J Microbiol Biotechnol 29:475–487. https://doi.org/10.1007/s11274-012-1201-4

    Article  CAS  PubMed  Google Scholar 

  50. Srivastava V, Srivastava T, Kumar MS (2019) Fate of the persistent organic pollutant (POP)Hexachlorocyclohexane (HCH) and remediation challenges. Int Biodeterior Biodegrad 140:43–56. https://doi.org/10.1016/j.ibiod.2019.03.004

    Article  CAS  Google Scholar 

  51. Bhalerao TS, Puranik PR (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int Biodeterior Biodegrad 59:315–321. https://doi.org/10.1016/j.ibiod.2006.09.002

    Article  CAS  Google Scholar 

  52. Hernández-Ramos AC, Hernández S, Ortíz I (2019) Study on endosulfan-degrading capability of Paecilomyces variotii, Paecilomyces lilacinus and Sphingobacterium sp. in liquid cultures. Bioremediat J 23:251–258. https://doi.org/10.1080/10889868.2019.1671794

    Article  CAS  Google Scholar 

  53. Wang Y, Zhang BW, Chen NJ et al (2018) Combined bioremediation of soil co-contaminated with cadmium and endosulfan by Pleurotus eryngii and Coprinus comatus. J Soils Sedim 18:2136–2147. https://doi.org/10.1007/s11368-017-1762-9

    Article  CAS  Google Scholar 

  54. Abraham J, Silambarasan S (2014) Role of novel fungus Lasiodiplodia sp. JAS12 and plant growth promoting bacteria Klebsiella pneumoniae JAS8 in mineralization of endosulfan and its metabolites. Ecol Eng 70:235–240. https://doi.org/10.1016/j.ecoleng.2014.05.029

    Article  Google Scholar 

  55. Goswami S, Vig K, Singh DK (2009) Biodegradation of α and β endosulfan by Aspergillus sydoni. Chemosphere 75:883–888. https://doi.org/10.1016/j.chemosphere.2009.01.057

    Article  CAS  PubMed  Google Scholar 

  56. Katayama A, Matsumura F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12:1059–1065. https://doi.org/10.1002/etc.5620120612

    Article  CAS  Google Scholar 

  57. Kamei I, Takagi K, Kondo R (2011) Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsuta. J Wood Sci 57:317–322. https://doi.org/10.1007/s10086-011-1176-z

    Article  CAS  Google Scholar 

  58. Lee JB, Sohn HY, Shin KS et al (2006) Isolation of a soil bacterium capable of biodegradation and detoxification of endosulfan and endosulfan sulfate. J Agric Food Chem 54:8824–8828. https://doi.org/10.1021/jf061276e

    Article  CAS  PubMed  Google Scholar 

  59. Stockholm Convention (2001) Stockholm convention - home page. http://chm.pops.int/Home/tabid/2121/Default.aspx#convtext. Accessed 26 Dec 2020

  60. Agarwal A, Prajapati R, Singh OP et al (2015) Pesticide residue in water—a challenging task in India. Environ Monit Assess 187:1–21. https://doi.org/10.1007/s10661-015-4287-y

    Article  CAS  Google Scholar 

  61. Liang Y, Liu D, Zhan J et al (2020) New insight into the mechanism of POP-induced obesity: evidence from DDE-altered microbiota. Chemosphere 244:125123. https://doi.org/10.1016/j.chemosphere.2019.125123

    Article  CAS  PubMed  Google Scholar 

  62. Russo F, Ceci A, Pinzari F et al (2019) Bioremediation of Dichlorodiphenyltrichloroethane (DDT)-contaminated agricultural soils: potential of two autochthonous saprotrophic fungal strains. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01720-19

    Article  PubMed  PubMed Central  Google Scholar 

  63. Purnomo AS, Ashari K, Hermansyah F (2017) Evaluation of the synergistic effect of mixed cultures of white-rot fungus Pleurotus ostreatus and biosurfactant-producing bacteria on DDT biodegradation. J Microbiol Biotechnol 27:1306–1315. https://doi.org/10.4014/jmb.1701.01073

    Article  CAS  PubMed  Google Scholar 

  64. Isia I, Hadibarata T, Sari AA et al (2019) Potential use of a pathogenic yeast Pichia kluyveri FM012 for degradation of Dichlorodiphenyltrichloroethane (DDT). Water Air Soil Pollut 230:221. https://doi.org/10.1007/s11270-019-4265-z

    Article  CAS  Google Scholar 

  65. Sariwati A, Purnomo AS, Kamei I (2017) Abilities of co-cultures of brown-rot fungus Fomitopsis pinicola and Bacillus subtilis on biodegradation of DDT. Curr Microbiol 74:1068–1075. https://doi.org/10.1007/s00284-017-1286-y

    Article  CAS  PubMed  Google Scholar 

  66. Purnomo AS, Nawfa R, Martak F et al (2017) Biodegradation of aldrin and dieldrin by the white-rot fungus Pleurotus ostreatus. Curr Microbiol 74:320–324. https://doi.org/10.1007/s00284-016-1184-8

    Article  CAS  PubMed  Google Scholar 

  67. Birolli WG, Yamamoto KY, de Oliveira JR et al (2015) Biotransformation of dieldrin by the marine fungus Penicillium miczynskii CBMAI 930. Biocatal Agric Biotechnol 4:39–43. https://doi.org/10.1016/j.bcab.2014.06.002

    Article  Google Scholar 

  68. Xiao P, Mori T, Kamei I et al (2011) Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere 85:218–224. https://doi.org/10.1016/j.chemosphere.2011.06.028

    Article  CAS  PubMed  Google Scholar 

  69. Yamazaki K, Takagi K, Kataoka R et al (2014) Novel phosphorylation of aldrin-trans-diol by dieldrin-degrading fungus Mucor racemosus strain DDF. Int Biodeterior Biodegrad 92:36–40. https://doi.org/10.1016/j.ibiod.2014.04.005

    Article  CAS  Google Scholar 

  70. EPA U (2014) Priority pollutants list. https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf. Accessed 29 Dec 2020

  71. Hechmi N, Bosso L, El-Bassi L et al (2016) Depletion of pentachlorophenol in soil microcosms with Byssochlamys nivea and Scopulariopsis brumptii as detoxification agents. Chemosphere 165:547–554. https://doi.org/10.1016/j.chemosphere.2016.09.062

    Article  CAS  PubMed  Google Scholar 

  72. Vacondio B, Birolli WG, Ferreira IM et al (2015) Biodegradation of pentachlorophenol by marine-derived fungus Trichoderma harzianum CBMAI 1677 isolated from ascidian Didemnun ligulum. Biocatal Agric Biotechnol 4:266–275. https://doi.org/10.1016/j.bcab.2015.03.005

    Article  Google Scholar 

  73. Xiao P, Kondo R (2020) Biodegradation and biotransformation of pentachlorophenol by wood-decaying white rot fungus Phlebia acanthocystis TMIC34875. J Wood Sci 66:1–11. https://doi.org/10.1186/s10086-020-1849-6

    Article  CAS  Google Scholar 

  74. Bosso L, Cristinzio G (2014) A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Rev Environ Sci Biotechnol 13:387–427. https://doi.org/10.1007/s11157-014-9342-6

    Article  CAS  Google Scholar 

  75. Ruiz-Lara A, Fierro F, Carrasco U et al (2020) Proteomic analysis of the response of Rhizopus oryzae ENHE to pentachlorophenol: understanding the mechanisms for tolerance and degradation of this toxic compound. Process Biochem 95:242–250. https://doi.org/10.1016/j.procbio.2020.02.016

    Article  CAS  Google Scholar 

  76. Gao J, Ellis LBM, Wackett LP (2009) The University of Minnesota biocatalysis/biodegradation database: improving public access. Nucleic Acids Res 38:D488-491. https://doi.org/10.1093/nar/gkp771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moharikar A, Kapley A, Purohit HJ (2003) Detection of dioxygenase genes present in various activated sludge. Environ Sci Pollut Res 10:373–378. https://doi.org/10.1065/espr2003.07.164

    Article  CAS  Google Scholar 

  78. Nagpal V, Srinivasan MC, Paknikar KM (2008) Biodegradation of γ-hexachlorocyclohexane (Lindane) by a non-white rot fungus conidiobolus 03–1-56 isolated from litter. Indian J Microbiol 48:134–141. https://doi.org/10.1007/s12088-008-0013-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Asemoloye MD, Ahmad R, Jonathan SG (2017) Synergistic rhizosphere degradation of γ-hexachlorocyclohexane (lindane) through the combinatorial plant-fungal action. PLoS ONE 12:1–21. https://doi.org/10.1371/journal.pone.0183373

    Article  CAS  Google Scholar 

  80. Manickam N, Reddy MK, Saini HS, Shanker R (2008) Isolation of hexachlorocyclohexane-degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in γ-HCH degradation. J Appl Microbiol 104:952–960. https://doi.org/10.1111/j.1365-2672.2007.03610.x

    Article  CAS  PubMed  Google Scholar 

  81. Bateman A (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  82. Behera BK, Chakraborty HJ, Patra B et al (2020) Metagenomic analysis reveals bacterial and fungal diversity and their bioremediation potential from sediments of river Ganga and Yamuna in India. Front Microbiol 11:556136. https://doi.org/10.3389/fmicb.2020.556136

    Article  PubMed  PubMed Central  Google Scholar 

  83. Suhara H, Adachi A, Kamei I, Maekawa N (2011) Degradation of chlorinated pesticide DDT by litter-decomposing basidiomycetes. Biodegradation 22:1075–1086. https://doi.org/10.1007/s10532-011-9464-2

    Article  CAS  PubMed  Google Scholar 

  84. Xiao P, Kondo R (2019) Biodegradation and bioconversion of endrin by white rot fungi, Phlebia acanthocystis and Phlebia brevispora. Mycoscience 60:255–261. https://doi.org/10.1016/j.myc.2019.04.004

    Article  Google Scholar 

  85. Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191. https://doi.org/10.1016/j.molliq.2015.12.013

    Article  CAS  Google Scholar 

  86. Qamar SA, Ashiq M, Jahangeer M et al (2020) Chitosan-based hybrid materials as adsorbents for textile dyes—a review. Case Stud Chem Environ Eng 2:100021. https://doi.org/10.1016/j.cscee.2020.100021

    Article  Google Scholar 

  87. Nunes AR, Araújo KRO, Moura AO (2019) 2,4-Dichlorophenoxyactic acid herbicide removal from water using chitosan. Res Chem Intermed 45:315–332. https://doi.org/10.1007/s11164-018-3604-9

    Article  CAS  Google Scholar 

  88. Pochanavanich P, Suntornsuk W (2002) Fungal chitosan production and its characterization. Lett Appl Microbiol 35:17–21. https://doi.org/10.1046/j.1472-765X.2002.01118.x

    Article  CAS  PubMed  Google Scholar 

  89. Abo Elsoud MM, El Kady EM (2019) Current trends in fungal biosynthesis of chitin and chitosan. Bull Natl Res Cent 43:59. https://doi.org/10.1186/s42269-019-0105-y

    Article  Google Scholar 

  90. Kaur P, Kaur P (2020) β-Cyclodextrin-chitosan biocomposites for synergistic removal of imazethapyr and imazamox from soils: fabrication, performance and mechanisms. Sci Total Environ 710:135659. https://doi.org/10.1016/j.scitotenv.2019.135659

    Article  CAS  PubMed  Google Scholar 

  91. Silva M, Silva A, Fernandez-Lodeiro J et al (2017) Supercritical CO2-assisted spray drying of strawberry-like gold-coated magnetite nanocomposites in chitosan powders for inhalation. Materials (Basel) 10:74. https://doi.org/10.3390/ma10010074

    Article  CAS  Google Scholar 

  92. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99. https://doi.org/10.1016/j.addr.2009.07.019

    Article  CAS  PubMed  Google Scholar 

  93. Koyani RD, Vazquez-Duhalt R (2016) Laccase encapsulation in chitosan nanoparticles enhances the protein stability against microbial degradation. Environ Sci Pollut Res 23:18850–18857. https://doi.org/10.1007/s11356-016-7072-8

    Article  CAS  Google Scholar 

  94. Portero A, Teijeiro-Osorio D, Alonso MJ, Remuñán-López C (2007) Development of chitosan sponges for buccal administration of insulin. Carbohydr Polym 68:617–625. https://doi.org/10.1016/j.carbpol.2006.07.028

    Article  CAS  Google Scholar 

  95. Sweeney IR, Miraftab M, Collyer G (2014) Absorbent alginate fibres modified with hydrolysed chitosan for wound care dressings—II. Pilot scale development. Carbohydr Polym 102:920–927. https://doi.org/10.1016/j.carbpol.2013.10.053

    Article  CAS  PubMed  Google Scholar 

  96. Asgher M, Noreen S, Bilal M (2017) Enhancing catalytic functionality of Trametes versicolor IBL-04 laccase by immobilization on chitosan microspheres. Chem Eng Res Des 119:1–11. https://doi.org/10.1016/j.cherd.2016.12.011

    Article  CAS  Google Scholar 

  97. Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF (2004) Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res Part B Appl Biomater 69:216–222. https://doi.org/10.1002/jbm.b.30000

    Article  CAS  Google Scholar 

  98. Apriceno A, Bucci R, Girelli AM (2017) Immobilization of laccase from Trametes versicolor on chitosan macrobeads for anthracene degradation. Anal Lett 50:2308–2322. https://doi.org/10.1080/00032719.2017.1282504

    Article  CAS  Google Scholar 

  99. Yu Z, Zhang H, Fu X et al (2020) Immobilization of esterase SulE in cross-linked gelatin/chitosan and its application in remediating soils polluted with tribenuron-methyl and metsulfuron-methyl. Process Biochem 98:217–223. https://doi.org/10.1016/j.procbio.2020.08.014

    Article  CAS  Google Scholar 

  100. Cabrera-Barjas G, Gallardo F, Nesic A et al (2020) Utilization of industrial by-product fungal biomass from Aspergillus niger and Fusarium culmorum to obtain biosorbents for removal of pesticide and metal ions from aqueous solutions. J Environ Chem Eng 8:104355. https://doi.org/10.1016/j.jece.2020.104355

    Article  CAS  Google Scholar 

  101. Mohamad NR, Marzuki NHC, Buang NA et al (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29:205–220. https://doi.org/10.1080/13102818.2015.1008192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Patel SKS, Gupta RK, Kumar V et al (2020) Biomethanol production from methane by immobilized co-cultures of methanotrophs. Indian J Microbiol 60:318–324. https://doi.org/10.1007/s12088-020-00883-6

    Article  CAS  PubMed  Google Scholar 

  103. Patel SKS, Shanmugam R, Kalia VC, Lee JK (2020) Methanol production by polymer-encapsulated methanotrophs from simulated biogas in the presence of methane vector. Bioresour Technol 304:123022. https://doi.org/10.1016/j.biortech.2020.123022

    Article  CAS  PubMed  Google Scholar 

  104. Patel SKS, Gupta RK, Kondaveeti S et al (2020) Conversion of biogas to methanol by methanotrophs immobilized on chemically modified chitosan. Bioresour Technol 315:123791. https://doi.org/10.1016/j.biortech.2020.123791

    Article  CAS  PubMed  Google Scholar 

  105. Patel SKS, Jeon MS, Gupta RK et al (2019) Hierarchical macroporous particles for efficient whole-cell immobilization: application in bioconversion of greenhouse gases to methanol. ACS Appl Mater Interfaces 11:18968–18977. https://doi.org/10.1021/acsami.9b03420

    Article  CAS  PubMed  Google Scholar 

  106. Patel SKS, Anwar MZ, Kumar A et al (2018) Fe2O3 yolk-shell particle-based laccase biosensor for efficient detection of 2,6-dimethoxyphenol. Biochem Eng J 132:1–8. https://doi.org/10.1016/j.bej.2017.12.013

    Article  CAS  Google Scholar 

  107. Zhang C, Chen Z, Tao Y et al (2020) Enhanced removal of trichlorfon and Cd(II) from aqueous solution by magnetically separable chitosan beads immobilized Aspergillus sydowii. Int J Biol Macromol 148:457–465. https://doi.org/10.1016/j.ijbiomac.2020.01.176

    Article  CAS  PubMed  Google Scholar 

  108. Zhang J, Xu Z, Chen H, Zong Y (2009) Removal of 2,4-dichlorophenol by chitosan-immobilized laccase from Coriolus versicolor. Biochem Eng J 45:54–59. https://doi.org/10.1016/j.bej.2009.02.005

    Article  CAS  Google Scholar 

  109. Silambarasan S, Abraham J (2013) Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1. Water Air Soil Pollut 224:1369. https://doi.org/10.1007/s11270-012-1369-0

    Article  CAS  Google Scholar 

  110. Joner EJ, Leyval C, Colpaert JV (2006) Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ Pollut 142:34–38. https://doi.org/10.1016/j.envpol.2005.09.007

    Article  CAS  PubMed  Google Scholar 

  111. Domde P, Kapley A, Purohit HJ (2007) Impact of bioaugmentation with a consortium of bacteria on the remediation of wastewater-containing hydrocarbons. Env Sci Pollut Res 14:7–11. https://doi.org/10.1065/espr2006.11.358

    Article  CAS  Google Scholar 

  112. Wolfand JM, Lefevre GH, Luthy RG (2016) Metabolization and degradation kinetics of the urban-use pesticide fipronil by white rot fungus: Trametes versicolor. Environ Sci Process Impacts 18:1256–1265. https://doi.org/10.1039/c6em00344c

    Article  CAS  PubMed  Google Scholar 

  113. Nykiel-Szymańska J, Bernat P, Słaba M (2018) Potential of Trichoderma koningii to eliminate alachlor in the presence of copper ions. Ecotoxicol Environ Saf 162:1–9. https://doi.org/10.1016/j.ecoenv.2018.06.060

    Article  CAS  PubMed  Google Scholar 

  114. Wang J, Ohno H, Ide Y et al (2019) Identification of the cytochrome P450 involved in the degradation of neonicotinoid insecticide acetamiprid in Phanerochaete chrysosporium. J Hazard Mater 371:494–498. https://doi.org/10.1016/j.jhazmat.2019.03.042

    Article  CAS  PubMed  Google Scholar 

  115. Mori T, Wang J, Tanaka Y et al (2017) Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot fungus Phanerochaete sordida. J Hazard Mater 321:586–590. https://doi.org/10.1016/j.jhazmat.2016.09.049

    Article  CAS  PubMed  Google Scholar 

  116. Joo SH, Keum YS (2018) Oxidative metabolism of quinazoline insecticide fenazaquin by Aspergillus niger. Appl Biol Chem 61:681–687. https://doi.org/10.1007/s13765-018-0404-2

    Article  CAS  Google Scholar 

  117. Henn C, Arakaki RM, Monteiro DA et al (2020) Degradation of the organochlorinated herbicide diuron by rainforest basidiomycetes. Biomed Res Int 2020:1–9. https://doi.org/10.1155/2020/5324391

    Article  CAS  Google Scholar 

  118. Green R, Sang H, Im J, Jung G (2018) Chlorothalonil biotransformation by cytochrome P450 monooxygenases in Sclerotinia homoeocarpa. FEMS Microbiol Lett 365:214. https://doi.org/10.1093/femsle/fny214

    Article  CAS  Google Scholar 

  119. Palmer-Brown W, de Melo Souza PL, Murphy CD (2019) Cyhalothrin biodegradation in Cunninghamella elegans. Environ Sci Pollut Res 26:1414–1421. https://doi.org/10.1007/s11356-018-3689-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI) for his support. PB is thankful to UGC for providing Junior Research Fellowship. This manuscript is checked by Knowledge Resource Center, CSIR-NEERI, Nagpur, India and assigned KRC No. CSIR-NEERI/KRC/2020/DEC/EBGD/4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Bajaj.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokade, P., Purohit, H.J. & Bajaj, A. Myco-remediation of Chlorinated Pesticides: Insights Into Fungal Metabolic System. Indian J Microbiol 61, 237–249 (2021). https://doi.org/10.1007/s12088-021-00940-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-021-00940-8

Keywords

Navigation