Skip to main content
Log in

Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soils via inoculation with Sphingobium indicum B90A

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Soil pollution with hexachlorocyclohexane (HCH) has caused serious environmental problems. Here we describe the targeted degradation of all HCH isomers by applying the aerobic bacterium Sphingobium indicum B90A. In particular, we examined possibilities for large-scale cultivation of strain B90A, tested immobilization, storage and inoculation procedures, and determined the survival and HCH-degradation activity of inoculated cells in soil. Optimal growth of strain B90A was achieved in glucose-containing mineral medium and up to 65% culturability could be maintained after 60 days storage at 30°C by mixing cells with sterile dry corncob powder. B90A biomass produced in water supplemented with sugarcane molasses and immobilized on corncob powder retained 15–20% culturability after 30 days storage at 30°C, whereas full culturability was maintained when cells were stored frozen at −20°C. On the contrary, cells stored on corncob degraded γ-HCH faster than those that had been stored frozen, with between 15 and 85% of γ-HCH disappearance in microcosms within 20 h at 30°C. Soil microcosm tests at 25°C confirmed complete mineralization of [14C]-γ-HCH by corncob-immobilized strain B90A. Experiments conducted in small pits and at an HCH-contaminated agricultural site resulted in between 85 and 95% HCH degradation by strain B90A applied via corncob, depending on the type of HCH isomer and even at residual HCH concentrations. Up to 20% of the inoculated B90A cells survived under field conditions after 8 days and could be traced among other soil microorganisms by a combination of natural antibiotic resistance properties, unique pigmentation and PCR amplification of the linA genes. Neither the addition of corncob nor of corncob immobilized B90A did measurably change the microbial community structure as determined by T-RFLP analysis. Overall, these results indicate that on-site aerobic bioremediation of HCH exploiting the biodegradation activity of S. indicum B90A cells stored on corncob powder is a promising technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahuja AK, Awasthi MD (1993) Contamination of rice and wheat grains with residues of HCH and DDT. Pest Res J 5:83–86

    Google Scholar 

  • Ballschmiter K (1996) Persistent, ecotoxic and bioaccumulative compounds and their possible environmental effects. Pure Appl Chem 68:1771–1780

    Article  CAS  Google Scholar 

  • Boltner DS, Moreno M, Ramos JL (2005) 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol 7:1329–1338

    Article  CAS  Google Scholar 

  • Briglia M, Middeldorp PJM, Salkinoja-Salonen MS (1994) Mineralization performance of Rhodococcus chlorophenolicus strain PCP-1 in contaminated soil simulating on site conditions. Soil Biol Biochem 26:377–385

    Article  CAS  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    Article  CAS  Google Scholar 

  • Cassidy MB, Shaw KW, Lee H, Trevors JT (1997) Enhanced mineralization of pentachlorophenol by k-carrageenan encapsulated Pseudomonas sp.UG30. Appl Microbiol Biotechnol 47:108–113

    Article  CAS  Google Scholar 

  • Cérémonie H, Boubakri H, Mavingui P, Simonet P, Vogel TM (2006) Plasmid-encoded γ-hexachlorocyclohexane degradation genes and insertion sequences in Sphingobium francense (ex-Sphingomonas paucimobilis Sp+). FEMS Microbiol Lett 257:243–252

    Article  CAS  Google Scholar 

  • Dogra C, Raina V, Pal R, Suar M, Lal S, Gartemann KH, Holliger C, van der Meer JR, Lal R (2004) Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis: evidence for horizontal gene transfer. J Bacteriol 18:2225–2235

    Article  CAS  Google Scholar 

  • Errampalli D, Trevors JT, Lee H, Leung K, Cassidy M, Knoke K, Marwood T, Shaw K, Blair M, Chung E (1997) Bioremediation: A Perspective. J Soil Contam 6:207–218

    CAS  Google Scholar 

  • Grant A, Ogilvie LA (2003) Terminal restriction fragment length polymorphism data analysis. Appl Environ Microbiol 69:6342–6343

    Article  CAS  Google Scholar 

  • Kalbitz K, Popp P (1999) Seasonal impacts on β-hexachlorocyclohexane concentration in soil solution. Environ Poll 106:139–141

    Article  CAS  Google Scholar 

  • Kannan K, Tanabe S, Giesy JP, Tatsukawa R (1997) Organochlorine pesticides and polychlorinated biphenyls in foodstuffs from Asian and Oceanic countries. Rev Environ Contam Toxicol 152:1–55

    CAS  Google Scholar 

  • Kashyap R, Bhatnagar VK, Saiyed HN (2002) Integrated pest management and residue levels of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) in water samples from rural areas in Gujarat state, India. Arch Environ Health 57:337–339

    Article  CAS  Google Scholar 

  • Kumari R, Subudhi S, Suar M, Dhingra G, Raina V, Dogra C, Lal S, van der Meer J R, Holliger C, Lal R (2002) Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 68:6021–6028

    Article  CAS  Google Scholar 

  • Labana S, Pandey G, Paul D, Sharma NK, Basu A, Jain RK (2005) Pot and field studies of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100. Environ Sci Technol 39:3330–3337

    Article  CAS  Google Scholar 

  • Lal R, Dogra C, Malhotra S, Sharma P, Pal R (2006) Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends in Biotechnol 24:121–130

    Article  CAS  Google Scholar 

  • Mohn WW, Mertens B, Neufeld JD, Verstraete W, de Lorenzo V (2006) Distribution and phylogeny of hexachlorocyclohexane degrading bacteria in soils from Spain. Environ Microbiol 8:60–68

    Article  CAS  Google Scholar 

  • Mukherjee I, Gopal M (2002) Organochlorine insecticide residues in drinking and ground water in and around Delhi. J Environ Monit Assess 76:185–193

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nagata Y, Miyauchi K Takagi M (1999) Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol Biotechnol 23:380–390

    Article  CAS  Google Scholar 

  • Nalin R, Simonet P, Vogel TM, Normand A (1998) Rhodanobacter lindaniclasticus gen. nov. sp. nov., a lindane degrading bacterium. Int J Syst Bacteriol 49:19–23

    Article  Google Scholar 

  • Nawab A, Aleem A, Malik A (2003) Determination of organochlorine pesticides in agricultural soil with special reference to γ-HCH degradation by Pseudomonas strains. Biores Technol 88:41–46

    Article  CAS  Google Scholar 

  • Oliveira RM, Bastos LH, Dias AE, Silva SA, Moreira JC (2003) Residual concentration of hexachlorocyclohexane in a contaminated site in Cidade dos Meninos, Duque de Caxias, Rio de Janeiro, Brazil, after calcium oxide treatment. Cad Saude Publica 19:447–453

    Google Scholar 

  • Ortiz JB, Gonzalez de Canales ML, Sarasquete C (2001) The impact of persistent organochlorine contaminant (lindane, γ-HCH): histopathological alterations in fish tissues. Ecotoxicol Environ Restor 4:45–52

    Google Scholar 

  • Osterreicher-Cunha P, Langenbach T, Torres JPM, Lima ALC, de Campos Tácio, Vargas Jr EA, Wagener AR (2003) HCH distribution and microbial parameters after liming of a heavily contaminated soil in Rio de Janeiro. Environ Res 93:316–327

    Article  CAS  Google Scholar 

  • Pal R, Bala S, Dadhwal M, Kumar M, Dhingra G, Prakash O, Prabagran SR, Shivaji S, Cullum J, Holliger C, Lal R (2005) The hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+ having similar lin genes are three distinct species, Sphingobium indicum sp. nov.; Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov. and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Sys Evol Microbiol 55:1965–1972

    Article  CAS  Google Scholar 

  • Pepper IL, Gentry TJ, Newby DT, Roane TM, Josephson KL (2002) The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environ Health Perspect 110:943–946

    CAS  Google Scholar 

  • Phillips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392

    Article  CAS  Google Scholar 

  • Prakash O, Suar M, Raina V, Dogra C, Pal R, Lal R (2004) Residues of hexachlorocyclohexane (HCH) isomers in soil and water samples from Delhi and adjoining areas. Curr Sci 87:73–77

    CAS  Google Scholar 

  • Relman DA (1991) Universal bacterial 16D rDNA amplification and sequencing. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and applications. American Society for Microbiology, Washington, DC, pp 489–495

    Google Scholar 

  • Sahu SK, Patnaik KK, Sharmila M, Sethunathan N (1990) Degradation of alpha-, beta-, gamma- hexachlorocyclohexane by a soil bacterium under aerobic conditions. Appl Environ Microbiol 56:3620–3622

    CAS  Google Scholar 

  • Sanghi R, Tewari V (2001) Monitoring of pesticide residues in summer fruits and vegetables from Kanpur, India. Bull Environ Contam Toxicol 67:587–593

    Article  CAS  Google Scholar 

  • Senoo K, Wada H (1989) Isolation and identification of an aerobic γ-HCH- decomposing bacterium from soil. Soil Sci Plant Nutr 35:79–87

    CAS  Google Scholar 

  • Sharma P, Raina V, Kumari R, Malhotra S, Dogra C, Kumari H, Kohler HP, Buser HR, Holliger C, Lal R (2006) The haloalkane dehalogenase LinB is responsible for β- and δ-hexachlorocyclohexane transformation in Sphingobium indicum B90A. Appl Environ Microbiol 72:5720–5727

    Article  CAS  Google Scholar 

  • Simonich SL, Hites RA (1995) Global Distribution of persistent organochlorine compounds. Science 269:1851–1853

    Article  CAS  Google Scholar 

  • Smit E, Wolters AC, Lee H, Trevors JT, van Elsas JD (1996) Interactions between a genetically marked Pseudomonas fluorescens strain and bacteriophage R2f in soil: effects of nutrients, alginate encapsulation and wheat rhizosphere by alginate encapsulation. Microb Ecol 31:125–140

    Article  Google Scholar 

  • Suar M, van der Meer JR, Lawlor K, Holliger C, Lal R (2004) Dynamics of multi lin gene expression in Sphingomonas paucimobilis B90A in response to different HCH isomers. Appl Environ Microbiol 70:6650–6656

    Article  CAS  Google Scholar 

  • Swaminathan MS (2003) Biodiversity: an effective safety net against environmental pollution. Environ Poll 126:287–291

    Article  CAS  Google Scholar 

  • Thomas JC, Berger F, Jaciquier M, Bernillon D, Baud-Grasset F, Truffaut N., Normand P, Vogel TM, Simonet P (1996). Isolation and characterization of a novel (-hexachlorocyclohexane-degrading bacterium. J Bacteriol 178:6049–6055

    CAS  Google Scholar 

  • Trevors JT, van Elsas JD, van Overbeek LS, Starodub ME (1990). Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm. Appl Environ Microbiol 56:401–408

    CAS  Google Scholar 

  • Tu CM (1976) Utilization and degradation of lindane by soil microorganisms. Arch Microbiol 108:259–263

    Article  CAS  Google Scholar 

  • van Elsas JD, Trevors JT, Jain D, Wolters AC, Heijnen CE, van Overbeek LS (1992) Survival of, and root colonization by, alginate-encapsulated Pseudomonas fluorescens cells following introduction into soil. Biol Fert Soils 14:14–22

    Article  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into the soil. Microbiol Mol Biol Rev 61:121–135

    Google Scholar 

  • Vanbroekhoven K, Ryngaert A, Bastiaens L, Wattiau P, Vancanneyt M, Swings J., Mot RD, Springael D (2004) Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous sphingomonas from environmental samples. Environ Microbiol 6:1123–1136

    Article  CAS  Google Scholar 

  • Vidali M (2002) Bioremediation: an overview. Pure Appl Chem 73:1163–1172

    Article  Google Scholar 

  • Vijgen J (2006) The legacy of lindane HCH isomer production. A global overview of residue management, formulation and disposal. International HCH and Pesticide Association

  • Walker K, Vallero DA, Lewis RG (1999) Factors influencing the distribution of γ-HCH and other hexachlorocyclohexanes in the environment. Environ Sci Technol 33:4373–4378

    Article  CAS  Google Scholar 

  • Willem JK, Wollent I (2005) Inventories of obsolete pesticide stocks in Central and Eastern Europe. International HCH and pesticides forum. E. Elbestawy, Moklyachuk L, Pidlisnyuk V, Schulz N, Stefanovska T, Vijgen J (eds) Sustainable Development and Ecological Research Center, Ukraine and International HCH and Pesticides Associations, pp 37–39

  • Windholz M, Budavari S, Stroumtsos LY, Fertig MN (1976) The Merck index, 9th edn. Merck & Co., Inc, Rahway, NJ, pp 719–720

    Google Scholar 

  • Zou E, Matsumura F (2003) Long-term exposure to beta-hexachlorocyclohexane (beta-HCH) promotes transformation and invasiveness of MCF-7 human breast cancer cells. Biochem Pharmacol 66:831–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by grants from Indo Swiss Collaboration in Biotechnology Program. VR, AS, OP, MD and CD sincerely acknowledge the Council for Scientific and Industrial Research (CSIR) for providing doctoral fellowships. The authors thank Hans Peter Kohler, EAWAG, Switzerland for help with GC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rup Lal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raina, V., Suar, M., Singh, A. et al. Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soils via inoculation with Sphingobium indicum B90A. Biodegradation 19, 27–40 (2008). https://doi.org/10.1007/s10532-007-9112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-007-9112-z

Keywords

Navigation