Skip to main content
Log in

Taxonomically Characterized and Validated Bacterial Species Based on 16S rRNA Gene Sequences from India During the Last Decade

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Microbial taxonomy dealing with identification and characterization of prokaryotes like bacteria and archaea has always been a major area of research all over the world. Exploring diversity of microbes and description of novel species with different genes and secondary compounds is of utmost importance for better future and sustenance of life. India having an enormous range of ecosystems and diverse species inhabiting these niches is considered to be one of the richest biodiversity regions of the world. During the last decade, with newer methodologies and better technology, the prokaryotic taxonomy from India has extended our inventory of microbial communities in specific niches. However, there still exist some limitations in classifying the microbes from India as compared to that is done world-over. This review enlists the taxonomic description of novel taxa of prokaryotes from India in the past decade. A total of 378 new bacterial species have been classified from different habitats in India in the last ten years and no descriptions of archaeal species is documented till date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Satyanarayana T, Johri BN (2005) Microbial diversity: current perspectives and potential applications. IK International Pvt Ltd., Delhi

    Google Scholar 

  2. Badhai J, Ghosh TS, Das SK (2015) Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India. Front Microbiol 6:1166. https://doi.org/10.3389/fmicb.2015.01166

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mehetre GT, Paranjpe AS, Dastager SG, Dharne MS (2016) Complete metagenome sequencing based bacterial diversity and functional insights from basaltic hot spring of Unkeshwar, Maharashtra, India. Genom Data 7:140–143. https://doi.org/10.1016/j.gdata.2015.12.031

    Article  PubMed  Google Scholar 

  4. Shah V, Zakrzewski M, Wibberg D, Eikmeyer F, Schlüter A, Madamwar D (2013) Taxonomic profiling and metagenome analysis of a microbial community from a habitat contaminated with industrial discharges. Microb Ecol 66:533–550. https://doi.org/10.1007/s00248-013-0244-x

    Article  PubMed  Google Scholar 

  5. Sangwan N, Lata P, Dwivedi V, Singh A, Niharika N, Kaur J, Anand S, Malhotra J, Jindal S, Nigam A, Lal D (2012) Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS ONE 7:e46219. https://doi.org/10.1371/journal.pone.0046219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sangwan N, Lambert C, Sharma A, Gupta V, Khurana P, Khurana JP, Sockett RE, Gilbert JA, Lal R (2015) Arsenic rich Himalayan hot spring metagenomics reveal genetically novel predator–prey genotypes. Environ Microbiol Rep 7:812–823. https://doi.org/10.1111/1758-2229.12297

    Article  CAS  PubMed  Google Scholar 

  7. Sharma A, Schmidt M, Kiesel B, Cralle LE, Mahato NK, Singh Y, Richnow HH, Gilbert JA, Arnold W, Lal R (2018) Bacterial and archaeal viruses of Himalayan hot springs at Manikaran modulate host genomes. Front Microbiol 9:3095. https://doi.org/10.3389/fmicb.2018.03095

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mahato NK, Sharma A, Singh Y, Lal R (2019) Comparative metagenomic analyses of a high-altitude Himalayan geothermal spring revealed temperature-constrained habitat-specific microbial community and metabolic dynamics. Arch Microbiol. https://doi.org/10.1007/s00203-018-01616-6

    Article  PubMed  Google Scholar 

  9. Verma H, Bajaj A, Kumar R, Kaur J, Anand S, Nayyar N, Puri A, Singh Y, Khurana JP, Lal R (2017) Genome organization of Sphingobium indicum B90A: an archetypal hexachlorocyclohexane (HCH) degrading genotype. Genome Biol Evol 9:2191–2197. https://doi.org/10.1093/gbe/evx133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sangwan N, Verma H, Kumar R, Negi V, Lax S, Khurana P, Khurana JP, Gilbert JA, Lal R (2014) Reconstructing an ancestral genotype of two hexachlorocyclohexane-degrading Sphingobium species using metagenomic sequence data. ISME J 8:398–408. https://doi.org/10.1038/ismej.2013.153

    Article  CAS  PubMed  Google Scholar 

  11. Mahato NK, Gupta V, Singh P, Kumari R, Verma H, Tripathi C, Rani P, Sharma A, Singhvi N, Sood U, Hira P et al (2017) Microbial taxonomy in the era of OMICS: application of DNA sequences, computational tools and techniques. Antonie Van Leeuwenhoek 110:1357–1371. https://doi.org/10.1007/s10482-017-0928-1

    Article  PubMed  Google Scholar 

  12. Thompson CC, Amaral GR, Campeão M, Edwards RA, Polz MF, Dutilh BE, Ussery DW, Sawabe T, Swings J, Thompson FL (2015) Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol 197:359–370. https://doi.org/10.1007/s00203-014-1071-2

    Article  CAS  PubMed  Google Scholar 

  13. Kumar R, Verma H, Haider S, Bajaj A, Sood U, Ponnusamy K, Nagar S, Shakarad MN, Negi RK, Singh Y, Khurana JP (2017) Comparative genomic analysis reveals habitat-specific genes and regulatory hubs within the genus Novosphingobium. mSystems 2:e00020–17. https://doi.org/10.1128/mSystems.00020-17

    Article  PubMed  PubMed Central  Google Scholar 

  14. Verma H, Kumar R, Oldach P, Sangwan N, Khurana JP, Gilbert JA, Lal R (2014) Comparative genomic analysis of nine Sphingobium strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways. BMC Genomics 15:1014. https://doi.org/10.1186/1471-2164-15-1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharma A, Sangwan N, Negi V, Kohli P, Khurana JP, Rao DL, Lal R (2015) Pan-genome dynamics of Pseudomonas gene complements enriched across hexachlorocyclohexane dumpsite. BMC Genomics 16:313. https://doi.org/10.1186/s12864-015-1488-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gupta V, Haider S, Sood U, Gilbert JA, Ramjee M, Forbes K, Singh Y, Lopes BS, Lal R (2016) Comparative genomic analysis of novel Acinetobacter symbionts: a combined systems biology and genomics approach. Sci Rep 6:29043. https://doi.org/10.1038/srep29043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tripathi C, Mishra H, Khurana H, Dwivedi V, Kamra K, Negi RK, Lal R (2017) Complete genome analysis of Thermus parvatiensis and comparative genomics of Thermus spp. provide insights into genetic variability and evolution of natural competence as strategic survival attributes. Front Microbiol 8:1410. https://doi.org/10.3389/fmicb.2017.01410

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sood U, Hira P, Kumar R, Bajaj A, Rao DL, Lal R, Shakarad M (2019) Comparative genomic analyses reveal core-genome-wide genes under positive selection and major regulatory hubs in outlier strains of Pseudomonas aeruginosa. Front Microbiol 10:53. https://doi.org/10.3389/fmicb.2019.00053

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bhatia S, Batra N, Pathak A, Green SJ, Joshi A, Chauhan A (2015) Metagenomic evaluation of bacterial and archaeal diversity in the geothermal hot springs of Manikaran, India. Genome Announc 3:e01544–e1614. https://doi.org/10.1128/genomeA.01544-14

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dudhagara P, Ghelani A, Patel R, Chaudhari R, Bhatt S (2015) Bacterial tag encoded FLX titanium amplicon pyrosequencing (bTEFAP) based assessment of prokaryotic diversity in metagenome of Lonar soda lake, India. Genomic Data 4:8–11. https://doi.org/10.1016/j.gdata.2015.01.010

    Article  Google Scholar 

  21. Mangrola AV, Dudhagara P, Koringa P, Joshi CG, Patel RK (2015) Shotgun metagenomic sequencing based microbial diversity assessment of Lasundra hot spring, India. Genomic Data 4:73–75. https://doi.org/10.1016/j.gdata.2015.03.005

    Article  Google Scholar 

  22. Saxena R, Dhakan DB, Mittal P, Waiker P, Chowdhury A, Ghatak A, Sharma VK (2017) Metagenomic analysis of hot springs in Central India reveals hydrocarbon degrading thermophiles and pathways essential for survival in extreme environments. Front Microbiol 7:2123. https://doi.org/10.3389/fmicb.2016.02123

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gupta RS (2000) The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24:367–402. https://doi.org/10.1111/j.1574-6976.2000.tb00547.x

    Article  CAS  PubMed  Google Scholar 

  24. Krieg NR, Brenner DJ, Staley JT (2005) Bergey's manual of systematic bacteriology: the proteobacteria. Springer, Berlin. ISBN 978–0–387–95040–2.

  25. Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A (2017) Proteobacteria: a common factor in human diseases. BioMed Res Int. https://doi.org/10.1155/2017/9351507

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sharma A, Gilbert JA, Lal R (2016) (Meta) genomic insights into the pathogenome of Cellulosimicrobium cellulans. Sci Rep 6:25527. https://doi.org/10.1038/srep25527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tilak KV, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 10:136–150. https://pdfs.semanticscholar.org/345a/779e00266360d055e69787586e1edf473c4b.pdf

  28. Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V, Gasbarrini A (2018) Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig Liver Dis 50:421–428. https://doi.org/10.1016/j.dld.2018.02.012

    Article  PubMed  Google Scholar 

  29. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266. https://doi.org/10.1099/ijs.0.016949-0

    Article  CAS  PubMed  Google Scholar 

  30. Shivaji S, Chaturvedi P, Begum Z, Pindi PK, Manorama R, Padmanaban DA, Shouche YS, Pawar S, Vaishampayan P, Dutt CB, Datta GN, Manchanda RK, Rao UR, Bhargava PM, Narlikar JV (2009) Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol 59:2977–2986. https://doi.org/10.1099/ijs.0.002527-0

    Article  CAS  PubMed  Google Scholar 

  31. Dadhwal M, Jit S, Kumari H, Lal R (2009) Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 59:3140–3144. https://doi.org/10.1099/ijs.0.005553-0

    Article  CAS  PubMed  Google Scholar 

  32. Lai Q, Yuan J, Shao Z (2009) Maribaculum marinum gen. nov., sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 59:3083–3087. https://doi.org/10.1099/ijs.0.008177-0

    Article  CAS  PubMed  Google Scholar 

  33. Lai Q, Yuan J, Shao Z (2009) Altererythrobacter marinus sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 59:2973–2976. https://doi.org/10.1099/ijs.0.008193-0

    Article  CAS  PubMed  Google Scholar 

  34. Lakshmi KV, Sasikala C, Ramana CV (2009) Rhodoplanes pokkaliisoli sp. nov., a phototrophic alphaproteobacterium isolated from a waterlogged brackish paddy soil. Int J Syst Evol Microbiol 59:2153–2157. https://doi.org/10.1099/ijs.0.008185-0

    Article  CAS  PubMed  Google Scholar 

  35. Ramana VV, Kumar PA, Srinivas TNR, Sasikala C, Ramana CV (2009) Rhodobacter aestuarii sp. nov., a phototrophic alphaproteobacterium isolated from an estuarine environment. Int J Syst Evol Microbiol 59:1133–1136. https://doi.org/10.1099/ijs.0.004507-0

    Article  CAS  PubMed  Google Scholar 

  36. Bandyopadhyay S, Schumann P, Das SK (2013) Pannonibacter indica sp. nov., a highly arsenate-tolerant bacterium isolated from a hot spring in India. Arch Microbiol 195:1–8. https://doi.org/10.1007/s00203-012-0840-z

    Article  CAS  PubMed  Google Scholar 

  37. Rakshak K, Ravinder K, Nupur STNR, Kumar PA (2013) Caldimonas meghalayensis sp. nov., a novel thermophillic betaproteobacterium isolated from a hot spring of Meghalaya in northeast India. Antonie Van Leeuwenhoek 104:1217–1225. https://doi.org/10.1007/s10482-013-0043-x

    Article  CAS  PubMed  Google Scholar 

  38. Srinivas A, Sasikala C, Ramana CV (2014) Rhodoplanes oryzae sp. nov., a phototrophic alphaproteobacterium isolated from the rhizosphere soil of paddy. Int J Syst Evol Microbiol 64:2198–2203. https://doi.org/10.1099/ijs.0.063347-0

    Article  CAS  PubMed  Google Scholar 

  39. Patil VS, Salunkhe RC, Patil RH, Husseneder C, Shouche YS, Ramana VV (2015) Enterobacillus tribolii gen. nov., sp. nov., a novel member of the family Enterobacteriaceae, isolated from the gut of a red flour beetle Tribolium castaneum. Antonie van Leeuwenhoek 107:1207–1216. https://doi.org/10.1007/s10482-015-0412-8

    Article  CAS  PubMed  Google Scholar 

  40. Ramaprasad EVV, Tushar L, Dave B, Sasikala C, Ramana CV (2016) Rhodovulum algae sp. nov., isolated from an algal mat. Int J Syst Evol Microbiol 66:3367–3371. https://doi.org/10.1099/ijsem.0.001203

    Article  CAS  PubMed  Google Scholar 

  41. Ojha AK, Verma A, Pal Y, Bhatt D, Mayilraj S, Krishnamurthi S (2017) Marinomonas epiphytica sp. nov., isolated from a marine intertidal macroalga. Int J Syst Evol Microbiol 67:2746–2751. https://doi.org/10.1099/ijsem.0.002014

    Article  CAS  PubMed  Google Scholar 

  42. Pal D, Kaur N, Sudan SK, Bisht B, Krishnamurthi S, Mayilraj S (2018) Acidovorax kalamii sp. nov., isolated from a water sample of the river Ganges. Int J Syst Evol Microbiol 68:1719–1724. https://doi.org/10.1099/ijsem.0.002736

    Article  CAS  PubMed  Google Scholar 

  43. Parag B, Sasikala Ch, Ramana ChV (2013) Molecular and culture dependent characterization of endolithic bacteria in two beach sand samples and description of Rhizobium endolithicum sp. nov. Antonie Van Leeuwenhoek 104:1235–1244. https://doi.org/10.1007/s10482-013-0046-7

    Article  CAS  PubMed  Google Scholar 

  44. Reddy SV, Aspana S, Tushar DL, Sasikala C, Ramana CV (2013) Spirochaeta sphaeroplastigenens sp. nov., a halo-alkaliphilic, obligately anaerobic spirochaete isolated from soda lake Lonar. Int J Syst Evol Microbiol 63:2223–2228. https://doi.org/10.1099/ijs.0.046292-0

    Article  CAS  PubMed  Google Scholar 

  45. Sravanthi T, Tushar L, Sasikala C, Ramana CV (2015) Spirochaeta odontotermitis sp. nov., an obligately anaerobic, cellulolytic, halotolerant, alkaliphilic spirochaete isolated from the termite Odontotermes obesus (Rambur) gut. Int J Syst Evol Microbiol 65:4589–4594. https://doi.org/10.1099/ijsem.0.000616

    Article  CAS  PubMed  Google Scholar 

  46. Shivani Y, Subhash Y, Tushar L, Sasikala Ch, Ramana CV (2015) Spirochaeta lutea sp. nov., isolated from marine habitats and emended description of the genus Spirochaeta. Syst Appl Microbiol 38:110–114. https://doi.org/10.1016/j.syapm.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  47. Shivani Y, Subhash Y, Sasikala C, Ramana CV (2016) Description of ‘Candidatus Marispirochaeta associata’ and reclassification of Spirochaeta bajacaliforniensis, Spirochaeta smaragdinae and Spirochaeta sinaica to a new genus Sediminispirochaeta gen. nov. as Sediminispirochaeta bajacaliforniensis comb. nov., Sediminispirochaeta smaragdinae comb. nov. and Sediminispirochaeta sinaica comb. nov. Int J Syst Evol Microbiol 66:5485–5492. https://doi.org/10.1099/ijsem.0.001545

    Article  CAS  PubMed  Google Scholar 

  48. Sravanthi T, Tushar L, Sasikala C, Ramana CV (2016) Alkalispirochaeta cellulosivorans gen. nov., sp. nov., a cellulose-hydrolysing, alkaliphilic, halotolerant bacterium isolated from the gut of a wood-eating cockroach (Cryptocercus punctulatus), and reclassification of four species of Spirochaeta as new combinations within Alkalispirochaeta gen. nov. Int J Syst Evol Microbiol 66:1612–1619. https://doi.org/10.1099/ijsem.0.000865

    Article  CAS  PubMed  Google Scholar 

  49. Anand S, Bala K, Saxena A, Schumann P, Lal R (2012) Microbacterium amylolyticum sp. nov., isolated from soil from an industrial waste site. Int J Syst Evol Microbiol 62:2114–2120. https://doi.org/10.1099/ijs.0.034439-0

    Article  CAS  PubMed  Google Scholar 

  50. Dastager SG, Qiang ZL, Damare S, Tang SK, Li WJ (2012) Agromyces indicus sp. nov., isolated from mangroves sediment in Chorao Island, Goa, India. Antonie van Leeuwenhoek 102:345–352. https://doi.org/10.1007/s10482-012-9744-9

    Article  CAS  PubMed  Google Scholar 

  51. Nimaichand S, Zhang YG, Cheng J, Li L, Zhang DF, Zhou EM, Dong L, Ningthoujam DS, Li WJ (2013) Micromonospora kangleipakensis sp. nov., isolated from a sample of limestone quarry. Int J Syst Evol Microbiol 63:4546–4551. https://doi.org/10.1099/ijs.0.052746-0

    Article  CAS  PubMed  Google Scholar 

  52. Singh PK, Kumari A, Chawla N, Pinnaka AK, Korpole S (2015) Rhodococcus lactis sp. nov., an actinobacterium isolated from sludge of a dairy waste treatment plant. Int J Syst Evol Microbiol 65:4215–4220. https://doi.org/10.1099/ijsem.0.000565

    Article  CAS  PubMed  Google Scholar 

  53. Sultanpuram VR, Mothe T, Mohammed F (2015) Nocardioides solisilvae sp. nov., isolated from a forest soil. Antonie Van Leeuwenhoek 107:1599–1606. https://doi.org/10.1007/s10482-015-0455-x

    Article  CAS  PubMed  Google Scholar 

  54. Chen RW, Wang KX, Zhou XF, Long C, Tian XP, Long LJ (2018) Indioceanicola profundi gen. nov., sp. nov., isolated from Indian Ocean sediment. Int J Syst Evol Microbiol 68:3707–3712. https://doi.org/10.1099/ijsem.0.003016

    Article  PubMed  Google Scholar 

  55. Ramaprasad EVV, Sasikala C, Ramana CV (2015) Ornithinimicrobium algicola sp. nov., a marine actinobacterium isolated from the green alga of the genus Ulva. Int J Syst Evol Microbiol 65:4627–4631. https://doi.org/10.1099/ijsem.0.000624

    Article  CAS  PubMed  Google Scholar 

  56. Prakash O, Nimonkar Y, Munot H, Sharma A, Vemuluri VR, Chavadar MS, Shouche YS (2014) Description of Micrococcus aloeverae sp. nov., an endophytic actinobacterium isolated from Aloe vera. Int J Syst Evol Microbiol 64:3427–3433. https://doi.org/10.1099/ijs.0.063339-0

    Article  CAS  PubMed  Google Scholar 

  57. Kaur G, Mual P, Kumar N, Verma A, Kumar A, Krishnamurthi S, Mayilraj S (2016) Microbacterium aureliae sp. nov., a novel actinobacterium isolated from Aurelia aurita, the moon jellyfish. Int J Syst Evol Microbiol 66:4665–4670. https://doi.org/10.1099/ijsem.0.001407

    Article  CAS  PubMed  Google Scholar 

  58. Rahi P, Kurli R, Pansare AN, Khairnar M, Jagtap S, Patel NB, Dastager SG, Lawson PA, Shouche YS (2018) Microbacterium telephonicum sp. nov., isolated from the screen of a cellular phone. Int J Syst Evol Microbiol 68:1052–1058. https://doi.org/10.1099/ijsem.0.002622

    Article  CAS  PubMed  Google Scholar 

  59. Ramaswamy M, Nair S, Soumya VP, Thomas GV (2013) Phylogenetic analysis identifies a ‘Candidatus Phytoplasma oryzae’-related strain associated with yellow leaf disease of areca palm (Areca catechu L.) in India. Int J Syst Evol Microbiol 63:1376–1382. https://doi.org/10.1099/ijs.0.043315-0

    Article  PubMed  Google Scholar 

  60. Kumar PA, Srinivas TNR, Sasikala C, Ramana CV, Suling J, Imhoff J (2009) Prosthecochloris indica sp. nov., a novel green sulfur bacterium from marine aquaculture pond of Kakinada, India. J Gen Appl Microbiol 55:163–169. https://doi.org/10.2323/jgam.55.163

    Article  CAS  Google Scholar 

  61. Suradkar A, Villanueva C, Gaysina LA, Casamatta DA, Saraf A, Dighe G, Mergu R, Singh P (2017) Nostoc thermotolerans sp. nov., a soil-dwelling species of Nostoc (Cyanobacteria). Int J Syst Evol Microbiol 67:1296–1305. https://doi.org/10.1099/ijsem.0.001800

    Article  CAS  PubMed  Google Scholar 

  62. Shashidhar R, Bandekar JR (2009) Deinococcus piscis sp. nov., a radiation-resistant bacterium isolated from a marine fish. Int J Syst Evol Microbiol 59:2714–2717. https://doi.org/10.1099/ijs.0.003046-0

    Article  CAS  PubMed  Google Scholar 

  63. Yadav S, Vaddavalli R, Siripuram S, Eedara RVV, Yadav S, Rabishankar O, Lodha T, Chintalapati S, Chintalapati V (2018) Planctopirus hydrillae sp. nov., an antibiotic producing Planctomycete isolated from the aquatic plant Hydrilla and its whole genome shotgun sequence analysis. J Antibiot 71:575. https://doi.org/10.1038/s41429-018-0035-1

    Article  CAS  Google Scholar 

  64. Lai Q, Cao J, Dupont S, Shao Z, Jebbar M, Alain K (2016) Thermodesulfatator autotrophicus sp. nov., a thermophilic sulfate-reducing bacterium from the Indian Ocean. Int J Syst Evol Microbiol 66:3978–3982. https://doi.org/10.1099/ijsem.0.001297

    Article  CAS  PubMed  Google Scholar 

  65. Jayasinghearachchi HS, Lal B (2011) Oceanotoga teriensis gen. nov., sp. nov., a thermophilic bacterium isolated from offshore oil-producing wells. Int J Syst Evol Microbiol 61:554–560. https://doi.org/10.1099/ijs.0.018036-0

    Article  CAS  PubMed  Google Scholar 

  66. Rajasabapathy R, Mohandass C, Dastager SG, Liu Q, Khieu T-N, Son CK, Li W-J, Colaco A (2014) Roseovarius azorensis sp. nov., isolated from seawater at Espalamaca Azores. Antonie van Leeuwenhoek 105:571–578. https://doi.org/10.1007/s10482-013-0109-9

    Article  CAS  PubMed  Google Scholar 

  67. Shivaji S, Reddy VVP, Rao SSS, Begum Z, Manasa P, Srinivas TNR (2012) Cyclobacterium qasimii sp. nov., a psychrotolerant bacterium isolated from Arctic marine sediment. Int J Syst Evol Microbiol 62:2133–2139. https://doi.org/10.1099/ijs.0.038661-0

    Article  CAS  PubMed  Google Scholar 

  68. Srinivas TNR, Reddy VVP, Begum Z, Manasa P, Shivaji S (2012) Oceanisphaera arctica sp. nov., isolated from Arctic marine sediment, and emended description of the genus Oceanisphaera. Int J Syst Evol Microbiol 62:1926–1931. https://doi.org/10.1099/ijs.0.036475-0

    Article  CAS  PubMed  Google Scholar 

  69. Srinivas TNR, Manasa P, Begum Z, Sunil B, Sailaja B, Singh SK, Prasad S, Shivaji S (2013) Iodobacter arcticus sp. nov., a psychrotolerant bacterium isolated from a meltwater stream sediment of an Arctic glacier. Int J Syst Evol Microbiol 63:2800–2805. https://doi.org/10.1099/ijs.0.044776-0

    Article  CAS  PubMed  Google Scholar 

  70. Prasad S, Manasa BP, Buddhi S, Pratibha MS, Begum Z, Bandi S, Tirunagari P, Shivaji S (2013) Arcticibacter svalbardensis gen. nov., sp. nov., of the family Sphingobacteriaceae in the phylum Bacteroidetes, isolated from Arctic soil. Int J Syst Evol Microbiol 63:1627–1632. https://doi.org/10.1099/ijs.0.044420-0

    Article  CAS  PubMed  Google Scholar 

  71. Begum Z, Srinivas TNR, Manasa P, Sailaja B, Sunil B, Prasad S, Shivaji S (2013) Winogradskyella psychrotolerans sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from Arctic sediment. Int J Syst Evol Microbiol 63:1646–1652. https://doi.org/10.1099/ijs.0.044669-0

    Article  CAS  PubMed  Google Scholar 

  72. Srinivas TNR, Prasad S, Manasa P, Sailaja B, Begum Z, Shivaji S (2013) Lacinutrix himadriensis sp. nov., a psychrophilic bacterium isolated from a marine sediment of Kongsfjorden, Svalbard, Arctic and emended description of the genus Lacinutrix. Int J Syst Evol Microbiol 63:729–734. https://doi.org/10.1099/ijs.0.040907-0

    Article  CAS  PubMed  Google Scholar 

  73. Chaturvedi P, Prabahar V, Manorama R, Pindi PK, Bhadra B, Begum Z, Shivaji S (2008) Exiguobacterium soli sp. nov., a psychrophilic bacterium from the McMurdo Dry Valleys, Antarctica. Int J Syst Evol Microbiol 58:2447–2453. https://doi.org/10.1099/ijs.0.2008/000067-0

    Article  CAS  PubMed  Google Scholar 

  74. Pindi PK, Kishore KH, Reddy GSN, Shivaji S (2009) Description of Leifsonia kafniensis sp. nov. and Leifsonia antarctica sp. nov. Int J Syst Evol Microbiol 59:1348–1352. https://doi.org/10.1099/ijs.0.006643-0

    Article  CAS  PubMed  Google Scholar 

  75. Pindi PK, Manorama R, Begum Z, Shivaji S (2010) Arthrobacter antarcticus sp. nov., isolated from an Antarctic marine sediment. Int J Syst Evol Microbiol 60:2263–2266. https://doi.org/10.1099/ijs.0.012989-0

    Article  CAS  PubMed  Google Scholar 

  76. Shivaji S, Reddy GS (2014) Phylogenetic analyses of the genus Glaciecola: emended description of the genus Glaciecola, transfer of Glaciecola mesophila, G. agarilytica, G. aquimarina, G. arctica, G. chathamensis, G. polaris and G. psychrophila to the genus Paraglaciecola gen. nov. as Paraglaciecola mesophila comb. nov., P. agarilytica comb. nov., P. aquimarina comb. nov., P. arctica comb. nov., P. chathamensis comb. nov., P. polaris comb. nov. and P. psychrophila comb. nov., and description of Paraglaciecola oceanifecundans sp. Int J Syst Evol Microbiol 64:3264–3275. https://doi.org/10.1099/ijs.0.065409-0

    Article  CAS  PubMed  Google Scholar 

  77. Shivaji S, Sathyanarayana RG, Sundareswaran VR, Thomas C (2015) Description of Thalassospira lohafexi sp. nov., isolated from Southern Ocean, Antarctica. Arch Microbiol 197:627–637. https://doi.org/10.1007/s00203-015-1092-5

    Article  CAS  PubMed  Google Scholar 

  78. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013) Microbial genomic taxonomy. BMC Genomics 14:913. https://doi.org/10.1186/1471-2164-14-913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Meier-Kolthoff JP, Klenk HP, Göker M (2014) Taxonomic use of DNA G+ C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356. https://doi.org/10.1099/ijs.0.056994-0

    Article  CAS  PubMed  Google Scholar 

  80. Hahn MW, Jezberová J, Koll U, Beck-Saueressig T, Schmidt J (2016) Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. ISME J 10:1642–1655. https://doi.org/10.1038/ismej.2015.237

    Article  Google Scholar 

  81. Teeling H, Waldmann J, Lombardot T, Bauer M, Glöckner FO (2004) TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences. BMC Bioinform 5:163. https://doi.org/10.1186/1471-2105-5-163

    Article  Google Scholar 

  82. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264. https://doi.org/10.1128/JB.187.18.6258-6264.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ran W, Kristensen DM, Koonin EV (2014) Coupling between protein level selection and codon usage optimization in the evolution of bacteria and archaea. MBio 5:e00956–e1014. https://doi.org/10.1128/mBio.00956-14

    Article  PubMed  PubMed Central  Google Scholar 

  84. Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nature Commun 10:2182. https://doi.org/10.1038/s41467-019-10210-3

    Article  CAS  Google Scholar 

  85. Tsai MH, Liu YY, Soo VW, Chen CC (2019) A new genome-to-genome comparison approach for large-scale revisiting of current microbial taxonomy. Microorganisms 7:161. https://doi.org/10.3390/microorganisms7060161

    Article  PubMed Central  Google Scholar 

  86. Rosselló-Móra R, Whitman WB (2019) Dialogue on the nomenclatura and clasification of prokaryotes. Syst Appl Microbiol 42:5–14. https://doi.org/10.1016/j.syapm.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  87. Singh DN, Kumar A, Sarbhai MP, Tripathi AK (2012) Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane. Appl Microbiol Biotechnol 93:1337–1350. https://doi.org/10.1007/s00253-011-3778-1

    Article  CAS  PubMed  Google Scholar 

  88. Mani K, Salgaonkar BB, Braganca JM (2012) Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India. Aquat Biosyst 8:15. https://doi.org/10.1186/2046-9063-8-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Antony CP, Murrell JC, Shouche YS (2012) Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic Archaea in Lonar crater lake sediments. FEMS Microbiol Ecol 81:43–51. https://doi.org/10.1111/j.1574-6941.2011.01274.x

    Article  CAS  PubMed  Google Scholar 

  90. Upasani VN (2008) Microbiological studies on Sambhar Lake (Salt of Earth) Rajasthan, India. In: Proceedings of Taal 2007: the 12th world lake conference, vol 448, p 450

  91. Krishnamurthi S, Chakrabarti T (2013) Diversity of bacteria and archaea from a landfill in Chandigarh, India as revealed by culture-dependent and culture-independent molecular approaches. Syst Appl Microbiol 36:56–68. https://doi.org/10.1016/j.syapm.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  92. Panda AK, Bisht SS, De Mandal S, Kumar NS (2016) Bacterial and archeal community composition in hot springs from Indo-Burma region, North-east India. AMB Express 6:111. https://doi.org/10.1186/s13568-016-0284-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chaudhuri B, Chowdhury T, Chattopadhyay B (2017) Comparative analysis of microbial diversity in two hot springs of Bakreshwar, West Bengal, India. Genomic Data 12:122–129. https://doi.org/10.1016/j.gdata.2017.04.001

    Article  Google Scholar 

  94. Mukherjee D, Selvi VA, Ganguly J, Ram LC, Masto RE (2018) Exploratory study of archaebacteria and their habitat in underground, opencast coal mines and coal mine fire areas of Dhanbad. J Geo Soc India 91:575–582. https://doi.org/10.1007/s12594-018-0907-9

    Article  Google Scholar 

  95. Kalia VC, Patel SK, Kang YC, Lee JK (2019) Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 37:68–90. https://doi.org/10.1016/j.biotechadv.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  96. Kalia VC, Prakash J, Koul S, Ray S (2017) Simple and rapid method for detecting biofilm forming bacteria. Ind J Microbiol 57:109–111. https://doi.org/10.1007/s12088-016-0616-2

    Article  CAS  Google Scholar 

  97. Sood U, Singh DN, Hira P, Lee JK, Kalia VC, Lal R, Shakarad M (2019) Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. J Biotechnol 307:98–106. https://doi.org/10.1016/j.jbiotec.2019.11.0044

    Article  PubMed  Google Scholar 

  98. Kumar R, Verma H, Haider S, Bajaj A, Sood U, Ponnusamy K, Nagar S, Shakarad MN, Negi RK, Singh Y, Khurana JP (2017) Comparative genomic analysis reveals habitat-specific genes and regulatory hubs within the genus Novosphingobium. mSystems 2:e00020–17. https://doi.org/10.1128/mSystems.00020-17

  99. Verma H, Dhingra GG, Sharma M, Gupta V, Negi RK, Singh Y, Lal R (2019) Comparative genomics of Sphingopyxis spp. unravelled functional attributes. Genomics S0888–7543:30371–30374. https://doi.org/10.1016/j.ygeno.2019.11.008

    Article  CAS  Google Scholar 

  100. Yu Y, Zeng Y, Li J, Yang C, Zhang X, Luo F, Dai X (2019) An algicidal Streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously. Sci Total Environ 650:34–43. https://doi.org/10.1016/j.scitotenv.2018.08.433

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript was partly written when RL was on INSA-DFG Bilateral Exchange Program-2019. RL is thankful to The National Academy of Sciences, India (NASI) for providing the NASI Senior Scientist Platinum Jubilee Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rup Lal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 84 kb)

Supplementary file2 (DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hira, P., Singh, P., Pinnaka, A.K. et al. Taxonomically Characterized and Validated Bacterial Species Based on 16S rRNA Gene Sequences from India During the Last Decade. Indian J Microbiol 60, 54–61 (2020). https://doi.org/10.1007/s12088-019-00845-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-019-00845-7

Keywords

Navigation