Skip to main content
Log in

Compound-Specific Stable Isotope Analysis: Implications in Hexachlorocyclohexane in-vitro and Field Assessment

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Assessment of biotic and abiotic degradation reactions by studying the variation in stable isotopic compositions of organic contaminants in contaminated soil and aquifers is being increasingly considered during the last two decades with development of Compound specific stable isotope analysis (CSIA) technique. CSIA has been recognized as a potential tool for evaluating both qualitative and quantitative degradation with measurement of shifts in isotope ratios of contaminants and their degradation products as its basis. Amongst a wide variety of environmental pollutants including monoaromatics, chlorinated ethenes and benzenes etc., it is only recently that its efficacy is being tested for assessing biodegradation of a noxious pollutant namely hexachlorocyclohexane (HCH), by pure microbial cultures as well as directly at the field site. Anticipating the increase in demand of this technique for monitoring the microbial degradation along with natural attenuation, this review highlights the basic problems associated with HCH contamination emphasizing the applicability of emerging CSIA technique to absolve the major bottlenecks in assessment of HCH. To this end, the review also provides a brief overview of this technique with summarizing the recent revelations put forward by both in vitro and in situ studies by CSIA in monitoring HCH biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weber R, Aliyeva G, Vijgen J (2013) The need for an integrated approach to the global challenge of POPs management. Environ Sci Pollut Res Int 20:1901–1906. doi:10.1007/s11356-012-1247-8

    Article  PubMed  Google Scholar 

  2. Fang GD, Dionysiou DD, Wang Y, Al-Abed SR, Zhou DM (2012) Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics. J Hazard Mat 227:394–401. doi:10.1016/j.jhazmat.2012.05.074

    Article  Google Scholar 

  3. Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HP, Holliger C, Jackson C, Oakeshott JG (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80. doi:10.1128/MMBR.00029-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. López Ó, Fernández-Bolaños JG (2011) Green trends in insect control (No. 11). Royal Society of Chemistry

  5. Nolan K, Kamrath J, Levitt J (2012) Lindane toxicity: a comprehensive review of the medical literature. Pediatr Dermatol 29:141–146. doi:10.1111/j.1525-1470.2011.01519.x

    Article  PubMed  Google Scholar 

  6. Perry AS, Yamamoto I, Ishaaya I, Perry RY (2013) Insecticides in agriculture and environment: retrospects and prospects. Springer, Berlin

    Google Scholar 

  7. Akoto O, Oppong-Otoo J, Osei-Fosu P (2015) Carcinogenic and non-carcinogenic risk of organochlorine pesticide residues in processed cereal-based complementary foods for infants and young children in Ghana. Chemosphere 132:193–199. doi:10.1016/j.chemosphere.2015.02.056

    Article  CAS  PubMed  Google Scholar 

  8. Wöhrnschimmel H, Tay P, von Waldow H, Hung H, Li YF, MacLeod M, Hungerbuhler K (2012) Comparative assessment of the global fate of α-and β-hexachlorocyclohexane before and after phase-out. Environ Sci Technol 46:2047–2054. doi:10.1021/es203109q

    Article  PubMed  Google Scholar 

  9. Phillips Theresa M, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392. doi:10.1007/s10532-004-2413-6

    Article  CAS  PubMed  Google Scholar 

  10. Vijgen J, Abhilash PC, Li YF, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian C, Schäffer A, Weber R (2011) Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs—a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut R 18:152–162. doi:10.1007/s11356-010-0417-9

    Article  CAS  Google Scholar 

  11. Vijgen J, Aliyeva G, Weber R (2013) The Forum Of The International HCH and Pesticides Association—a platform for international cooperation. Environ Sci Pollut Res 20:2081–2086. doi:10.1007/s11356-012-1170-z

    Article  Google Scholar 

  12. Vijgen, J, Yi LF, Forter M, Lal R, Weber R (2006) The legacy of lindane and technical HCH production. Organohalog Comp 68:899–904. (https://www.researchgate.net/profile/Rup_Lal/publication/267410840_The_legacy_of_lindane_and_technical_HCH_production_Organohalog_Compd/links/54ab68b30cf25c4c472f773f.pdf)

  13. Schaap MM, Zwart EP, Wackers PF, Huijskens I, van de Water B, Breit TM, van Steeg H, Jonker MJ, Luijten M (2012) Dissecting modes of action of non-genotoxic carcinogens in primary mouse hepatocytes. Arch Toxicol 86:1717–1727. doi:10.1007/s00204-012-0883-6

    Article  CAS  PubMed  Google Scholar 

  14. Alavanja MC, Ross MK, Bonner MR (2013) Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA Cancer J Clin 63:120–142. doi:10.3322/caac.21170

    Article  PubMed  Google Scholar 

  15. Mrema EJ, Rubino FM, Brambilla G, Moretto A, Tsatsakis AM, Colosio C (2013) Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology 307:74–88. doi:10.1016/j.tox.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  16. Heeb NV, Zindel D, Geueke B, Kohler HP, Lienemann P (2012) Biotransformation of Hexabromocyclododecanes (HBCDs) with LinB- An HCH-Converting Bacterial Enzyme. Environ Sci Technol 46:6566–6574. doi:10.1021/es2046487

    Article  CAS  PubMed  Google Scholar 

  17. Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12:421–444. doi:10.1007/s11157-013-9320-4

    Article  CAS  Google Scholar 

  18. Wycisk P, Stollberg R, Neumann C, Gossel W, Weiss H, Weber R (2013) Integrated methodology for assessing the HCH groundwater pollution at the multi-source contaminated mega-site Bitterfeld/Wolfen. Environ Sci Pollut Res Int 20:1907–1917. doi:10.1007/s11356-012-0963-4

    Article  CAS  PubMed  Google Scholar 

  19. Bashir S, Hitzfeld KL, Gehre M, Richnow HH, Fischer A (2015) Evaluating degradation of hexachlorcyclohexane (HCH) isomers within a contaminated aquifer using compound-specific stable carbon isotope analysis (CSIA). Water Res 71:187–196. doi:10.1016/j.watres.2014.12.033

    Article  CAS  PubMed  Google Scholar 

  20. Jit S, Dadhwal M, Kumari H, Jindal S, Kaur J, Lata P, Niharika N et al (2011) Evaluation of hexachlorocyclohexane contamination from the last lindane production plant operating in India. Environ Sci Pollut Res Int 18:586–597. doi:10.1007/s11356-010-0401-4

    Article  CAS  PubMed  Google Scholar 

  21. Kallenborn R, Halsall C, Dellong M, Carlsson P (2012) The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants. J Environ Monit 14:2854–2869. doi:10.1039/C2EM30519D

    Article  CAS  PubMed  Google Scholar 

  22. IARC (1979) Hexachlorocyclohexane (technical HCH and lindane). In: Some halogenated hydrocarbons. IARC monographs on the evaluation of carcinogenic risk of chemicals to humans, vol 20. Lyon, France, International Agency for Research on Cancer. pp 195–239

  23. Hazardous Substances Data Bank (HSDB) (2003). A database of the National Library of Medicine’s TOXNET system

  24. US Department of Health and Human Services. Toxicological profile for alpha-, beta-, gamma-, and delta-hexachlorocyclohexane. Atlanta, GA: Public Health Service Agency for Toxic Substances and Disease Registry. 2005. (http://www.atsdr.cdc.gov/toxprofiles/tp43.pdf)

  25. Lide DR (1991) CRC handbook of chemistry and physics, 72nd edn. CRC Press, Boca, pp 3–241

    Google Scholar 

  26. Hollifield HC (1979) Rapid nephelometric estimate of water solubility of highly insoluble organic chemicals of environmental interest. Bull Environ Contam Toxicol 23:579–586. doi:10.1007/BF01770007

    Article  CAS  PubMed  Google Scholar 

  27. Clayton G, Clayton F (1981) Patty’s industrial hygiene and toxicology, 3rd edn. John Wiley, New York, pp 2786–2788

    Google Scholar 

  28. Rippen G, Ilgenstein M, Klöpffer W, Poremski HJ (1982) Screening of the adsorption behavior of new chemicals: natural soils and model adsorbents. Ecotox Environ Safety 6:236–245. doi:10.1016/0147-6513(82)90014-8

    Article  CAS  Google Scholar 

  29. Weiss G (1986) Hazardous chemicals data book, 2nd edn. Noyes Data Corporation, Park Ridge, p 153

    Google Scholar 

  30. Alvarez A, Benimeli CS, Saez JM, Fuentes MS, Cuozzo SA, Polti MA, Amoroso MJ (2012) Bacterial bio-resources for remediation of hexachlorocyclohexane. Intern J Mol Sci 13:15086–15106. doi:10.3390/ijms131115086

    Article  CAS  Google Scholar 

  31. Camacho-Pérez B, Ríos-Leal E, Rinderknecht-Seijas N, Poggi-Varaldo HM (2012) Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review. J Environ Manag 95:S306–S318. doi:10.1016/j.jenvman.2011.06.047

    Article  Google Scholar 

  32. Chen H, Gao B, Wang S, Fang J (2015) Microbial Degradation of Hexachlorocyclohexane (HCH) Pesticides. Advances in Biodegradation and Bioremediation of Industrial Waste

  33. Usman M, Tascone O, Faure P, Hanna K (2014) Chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soils. Sci Total Environ 476:434–439. doi:10.1016/j.scitotenv.2014.01.027

    Article  PubMed  Google Scholar 

  34. Kolvenbach BA, Helbling DE, Kohler HP, Corvini PF (2014) Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria. Curr Opin Biotechnol 27:8–14. doi:10.1016/j.copbio.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  35. Sangwan N, Lata P, Dwivedi V, Singh A, Niharika N, Kaur J, Anand S, Malhotra J, Jindal S, Nigam A, Lal D et al (2012) Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS ONE 7(9):e46219. doi:10.1371/journal.pone.0046219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Verma H, Kumar R, Oldach P, Sangwan N, Khurana JP, Gilbert JA, Lal R (2014) Comparative genomic analysis of nine Sphingobium strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways. BMC Genom 15:1. doi:10.1186/1471-2164-15-1014

    Article  Google Scholar 

  37. Anand S, Sangwan N, Lata P, Kaur J, Dua A, Singh AK, Verma M, Kaur J, Khurana JP, Khurana P, Mathur S (2012) Genome sequence of Sphingobium indicum B90A, a hexachlorocyclohexane-degrading bacterium. J Bacteriol 194:4471–4472. doi:10.1186/1471-2164-15-1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Garg N, Bala K, Lal R (2012) Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 62:618–623. doi:10.1099/ijs.0.028886-0

    Article  CAS  PubMed  Google Scholar 

  39. Niharika N, Sangwan N, Ahmad S, Singh P, Khurana JP, Lal R (2013) Draft genome sequence of Sphingobium chinhatense strain IP26T, isolated from a hexachlorocyclohexane dumpsite. Genome Announc 1:e00680. doi:10.1128/genomeA.00680-13

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mukherjee U, Kumar R, Mahato NK, Khurana JP, Lal R (2013) Draft genome sequence of Sphingobium sp. strain HDIPO4, an avid degrader of hexachlorocyclohexane. Genome Announc 1:e00749–13. doi: 10.1128/genomeA.00749-13

  41. Kohli P, Dua A, Sangwan N, Oldach P, Khurana JP, Lal R (2013) Draft genome sequence of Sphingobium ummariense strain RL-3, a hexachlorocyclohexane-degrading bacterium. Genome Announc 1:e00956. doi:10.1128/genomeA.00956-13

    Article  PubMed  PubMed Central  Google Scholar 

  42. Garg N, Lata P, Jit S, Sangwan N, Singh AK, Dwivedi V, Niharika N, Kaur J, Saxena A, Dua A, Nayyar N, Kohli P et al (2016) Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation. Biodegradation 27:179–193. doi:10.1007/s10532-016-9765-6

    Article  CAS  PubMed  Google Scholar 

  43. Tabata M, Ohtsubo Y, Ohhata S, Tsuda M, Nagata Y (2013) Complete genome sequence of the γ-hexachlorocyclohexane-degrading bacterium Sphingomonas sp. strain MM-1. Genome Announc 1(3):e00247-13. doi: 10.1128/genomeA.00247-13

  44. Nagata Y, Miyauchi K, Takagi M (1999) Complete analysis of genes and enzymes forγ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol Biotechnol 23:380–390. doi:10.1038/sj.jim.2900736

    Article  CAS  PubMed  Google Scholar 

  45. Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M (2007) Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76:741–752. doi:10.1007/s00253-007-1066-x

    Article  CAS  PubMed  Google Scholar 

  46. Mehboob F, Langenhoff AA, Schraa G, Stams AJ (2013) Anaerobic degradation of lindane and other HCH Isomers. In: Management of microbial resources in the environment. Springer, Netherlands. pp. 495–521

  47. Langenhoff AA, Staps SJ, Pijls C, Rijnaarts HH (2013) Stimulation of hexachlorocyclohexane (HCH) biodegradation in a full scale in situ bioscreen. Environ Sci Technol 47:11182–11188. doi:10.1021/es4024833

    Article  CAS  PubMed  Google Scholar 

  48. Bombach P, Richnow HH, Kästner M, Fischer A (2010) Current approaches for the assessment of in situ biodegradation. Appl Microbiol Biotechnol 86:839–852. doi:10.1007/s00253-010-2461-2

    Article  CAS  PubMed  Google Scholar 

  49. Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated auquifers. J Contam Hydrol 75:215–255. doi:10.1016/j.jconhyd.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  50. Thullner M, Centler F, Richnow HH, Fischer A (2012) Quantification of organic pollutant degradation in contaminated aquifers using compound specific stable isotope analysis—review of recent developments. Org Geochem 42:1440–1460. doi:10.1016/j.orggeochem.2011.10.011

    Article  Google Scholar 

  51. Callaghan AV (2013) Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Curr Opin Biotechnol 24:506–515. doi:10.1016/j.copbio.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  52. Bombach P, Nägele N, Rosell M, Richnow HH, Fischer A (2015) Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms. J Hazard Mater 286:100–106. doi:10.1016/j.jhazmat.2014.12.028

    Article  CAS  PubMed  Google Scholar 

  53. Kuder T, Philp P (2013) Demonstration of compound-specific isotope analysis of hydrogen isotope ratios in chlorinated ethenes. Environ Sci Technol 47:1461–1467. doi:10.1021/es303476v

    Article  CAS  PubMed  Google Scholar 

  54. Hatzinger PB, Böhlke JK, Sturchio NC (2013) Application of stable isotope ratio analysis for biodegradation monitoring in groundwater. Curr Opin Biotechnol 24:542–549. doi:10.1016/j.copbio.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  55. Vogt C, Richnow HH (2013) Bioremediation via in situ microbial degradation of organic pollutants. Geobiotechnology II. Springer, Berlin, pp 123–146

    Google Scholar 

  56. Nijenhuis I, Schmidt M, Pellegatti E, Paramatti E, Richnow HH, Gargini A (2013) A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site. J Cont Hydrol 153:92–105. doi:10.1016/j.jconhyd.2013.06.004

    Article  CAS  Google Scholar 

  57. Badea SL, Vogt C, Weber S, Danet AF, Richnow HH (2009) Stable isotope fractionation of γ-hexachlorocyclohexane (lindane) during reductive dechlorination by two strains of sulfate-reducing bacteria. Environ Sci Technol 43:3155–3161. doi:10.1021/es801284m

    Article  CAS  PubMed  Google Scholar 

  58. Badea SL, Vogt C, Gehre M, Fischer A, Danet AF, Richnow HH (2011) Development of an enantiomer-specific stable carbon isotope analysis (ESIA) method for assessing the fate of α-hexachlorocyclo-hexane in the environment. Rapid Commun Mass Spectrom 25:1363–1372. doi:10.1002/rcm.4987

    Article  CAS  PubMed  Google Scholar 

  59. Bashir S, Fischer A, Nijenhuis I, Richnow HH (2013) Enantioselective carbon stable isotope fractionation of hexachlorocyclohexane during aerobic biodegradation by Sphingobium spp. Environ Sci Technol 47:11432–11439. doi:10.1021/es402197s

    Article  CAS  PubMed  Google Scholar 

  60. Wiegert C, Mandalakis M, Knowles T, Hovorková I, Polymenakou P, Aeppli C, Gustafsson Ö (2013) Carbon and Chlorine Stable Isotope Fractionation during Anaerobic Degradation of α-Hexachlorocyclohexane by a Mixed Culture Enriched from a Contaminated Site. Environ Sci Technol. ISSN 0013-936X, E-ISSN 1520-5851 (http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A650015&dswid=article)

  61. Chartrand M, Passeport E, Rose C, Lacrampe Couloume G, Bidleman TF, Jantunen LM, Sherwood Lollar B (2015) Compound specific isotope analysis of hexachlorocyclohexane isomers: a method for source fingerprinting and field investigation of in situ biodegradation. Rapid Commun Mass Spectrom 29:505–514. doi:10.1002/rcm.7146

    Article  CAS  PubMed  Google Scholar 

  62. Greenwood NN, Earnshaw A (2012) Chemistry of the Elements. Elsevier

  63. Reimann C, De Caritat P (2012) Chemical elements in the environment: factsheets for the geochemist and environmental scientist. Springer, Berlin

    Google Scholar 

  64. Brand WA, Coplen TB (2012) Stable isotope deltas: tiny, yet robust signatures in nature. Isot Environ Health S 48:393–409. doi:10.1080/10256016.2012.666977

    Article  CAS  Google Scholar 

  65. Creager AN (2013) Life atomic: a history of radioisotopes in science and medicine. University of Chicago Press, Chicago

    Book  Google Scholar 

  66. Schmitz MD, Kuiper KF (2013) High-precision geochronology. Elements 9:25–30. doi:10.2113/gselements.9.1.25

    Article  Google Scholar 

  67. Walker JD, Geissman JW, Bowring SA, Babcock LE (2013) The geological society of America geologic time scale. Geol Soc Am Bull 125:259–272

    Article  CAS  Google Scholar 

  68. Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt TC, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403:2471–2491

    Article  CAS  PubMed  Google Scholar 

  69. Rundel P, Ehleringer JR, Nagy KA (eds) (2012) Stable isotopes in ecological research. Springer, Berlin

    Google Scholar 

  70. Matthew DE, Hayes JM (1978) Isotope Ratio Monitoring GC-MS. Anal Chem 50:1465–1473. doi:10.1021/ac50033a022

    Article  Google Scholar 

  71. Cincinelli A, Pieri F, Zhang Y, Seed M, Jones KC (2012) Compound specific isotope analysis (CSIA) for chlorine and bromine: a review of techniques and applications to elucidate environmental sources and processes. Environ Pollut 169:112–127. doi:10.1016/j.envpol.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  72. Yarnes C (2013) δ13C and δ2H measurement of methane from ecological and geological sources by gas chromatography/combustion/pyrolysis isotope-ratio mass spectrometry. Rapid Commun Mass Sp 27:1036–1044. doi:10.1002/rcm.6549

    Article  CAS  Google Scholar 

  73. US EPA.2008.A guide for assessing biodegradation and source identification

  74. Eiler JM (2013) The isotopic anatomies of molecules and minerals. Annu Rev Earth Pl Sci 41:411–441. doi:10.1146/annurev-earth-042711-105348

    Article  CAS  Google Scholar 

  75. Galimov E (ed) (2012) The biological fractionation of isotopes. Elsevier, Amsterdam

    Google Scholar 

  76. Vogt C, Dorer C, Musat F, Richnow HH (2016) Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons—from enzymes to the environment. Curr Opin Biotechnol 41:90–98. doi:10.1016/j.copbio.2016.04.027

    Article  CAS  PubMed  Google Scholar 

  77. Lord Rayleigh (1902) LIX. On the distillation of binary mixtures. Lond Edinb Dublin Philos Mag J Sci 4:521–537. doi:10.1080/1478644020946287

    Article  Google Scholar 

  78. Zhang N, Bashir S, Qin J, Schindelka J, Fischer A, Nijenhuis I, Richnow HH (2014) Compound specific stable isotope analysis (CSIA) to characterize transformation mechanisms of α-hexachlorocyclohexane. J Hazard Mater 280:750–757. doi:10.1016/j.jhazmat.2014.08.046

    Article  CAS  PubMed  Google Scholar 

  79. Bidleman TF, Jantunen LM, Kurt-Karakus PB, Wong F (2012) Chiral persistent organic pollutants as tracers of atmospheric sources and fate: review and prospects for investigating climate change influences. Atmos Pollut Res 3:371–382. doi:10.5094/APR.2012.043

    Article  CAS  Google Scholar 

  80. Renpenning J, Hitzfeld KL, Gilevska T, Nijenhuis I, Gehre M, Richnow HH (2015) Development and validation of an universal unterface for compound-specific stable isotope analysis of chlorine (37Cl/35Cl) by GC-High-Temperature Conversion (HTC)-MS/IRMS. Anal Chem 87:2832–2839. doi:10.1021/ac504232u

    Article  CAS  PubMed  Google Scholar 

  81. Gehre M, Renpenning J, Gilevska T, Qi H, Coplen TB, Meijer HAJ, Brand WA, Schimmelmann A (2015) On-line hydrogen-isotope measurements of organic samples using elemental chromium: an extension for high temperature elemental-analyzer techniques. Anal Chem 87:5198–5205. doi:10.1021/acs.analchem.5b00085

    Article  CAS  PubMed  Google Scholar 

  82. Nijenhuis I, Renpenning J, Kümmel S, Richnow HH, Gehre M (2016) Recent advances in multi-element compound-specific stable isotope analysis of organohalides: achievements, challenges and prospects for assessing environmental sources and transformation. Trends Environ Anal Chem 11:1–8. doi:10.1016/j.teac.2016.04.001

    Article  CAS  Google Scholar 

  83. Lin Y, Robert NC, Manfred G (2010) Calibration of δ17O and δ18O of international measurement standards–VSMOW, VSMOW2, SLAP, and SLAP2. Rapid Commun Mass Spectrom 24:773–776. doi:10.1002/rcm.4449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of The German Academic Exchange Service (DAAD) and The Department of Science & Technology (DST) in the personal exchange program DAAD project 57035944 and DST project INT/FRG/DAAD/P-231/2013 and also University of Delhi R&D Grant 2015-16. PK gratefully acknowledges University Grants Commission (UGC) for providing research fellowships. This paper was partly written during the visit by RL and HHR under DST-DAAD exchange program to Germany (Helmholtz Zentrum für Umweltforschung-UFZ, Leipzig).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rup Lal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohli, P., Richnow, H.H. & Lal, R. Compound-Specific Stable Isotope Analysis: Implications in Hexachlorocyclohexane in-vitro and Field Assessment. Indian J Microbiol 57, 11–22 (2017). https://doi.org/10.1007/s12088-016-0630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0630-4

Keywords

Navigation