Skip to main content
Log in

Contribution of transgenic Casuarinaceae to our knowledge of the actinorhizal symbioses

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The Casuarinaceae family is a group of 96 species of trees and shrubs that are tolerant to adverse soil and climatic conditions. In the field, Casuarinaceae bears nitrogen-fixing root nodules (so called actinorhizal nodules) resulting from infection by the soil actinomycete Frankia. The association between Casuarina and Frankia is of tremendous ecological importance in tropical and subtropical areas where these trees contribute to land stabilization and soil reclamation. During differentiation of the actinorhizal nodule, a set of genes called actinorhizal nodulins is activated in the developing nodule. Understanding the molecular basis of actinorhizal nodule ontogenesis requires molecular tools such as genomics together with gene transfer technologies for functional analysis of symbiotic genes. Using the biological vectors Agrobacterium rhizogenes and A. tumefaciens, gene transfer into the two species Allocasuarina verticillata and Casuarina glauca has been successful. Transgenic Casuarinaceae plants proved to be valuable tools for exploring the molecular mechanisms resulting from the infection process of actinorhizal plants by Frankia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Berg RH (1999) Frankia forms infection threads. Can J Bot 77:1351–1357

    Article  Google Scholar 

  • Berry MA, Sunell AL (1990) The infection process and nodule development. In: Schwintzer RC, Tjepkema JD (eds) The biological of Frankia and actinorhizal plants. Academic, San Diego, pp 61–81

    Google Scholar 

  • Berry AM, Kahn RKS, Booth MC (1989) Identification of indole compounds secreted by Frankia HFPArI3 in defined culture medium. Plant Soil 118:205–209

    Article  CAS  Google Scholar 

  • Bhuvaneswari TV, Solheim B (2000) Root-hair interactions in actinorhizal symbioses. In: Ridge RW, Emons AMC (eds) Root hairs—cell and molecular biology. Springer, Netherlands, pp 311–327

    Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Interact 14:695–700

    Article  CAS  Google Scholar 

  • Callaham DA, Torrey JG (1977) Prenodule formation and primary nodule development in roots of Comptonia (Myricaceae). Can J Bot 55:2306–2318

    Article  Google Scholar 

  • Callaham D, Torrey JG, Peterson RL (1979) Root hair infection in actinomycete-induced root nodule initiation in Casuarina, Myrica, and Comptonia. Bot Gaz (Chic) 140:S1–S9

    Article  Google Scholar 

  • Cérémonie H, Cournoyer B, Maillet F, Normand P, Fernandez MP (1998) Genetic complementation of Rhizobial nod mutants with Frankia DNA: artifact or reality? Mol Gen Genet 260:115–119

    Article  PubMed  Google Scholar 

  • Cérémonie H, Debellé F, Fernandez MP (1999) Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor. Can J Bot 77:1293–1301

    Article  Google Scholar 

  • Davioud E, Petit A, Tate ME, Ryder MH, Tempé J (1988) Cucumopine—a new T-DNA encoded opine in hairy root and crown-gall. Phytochemistry 27:2429–2433

    Article  CAS  Google Scholar 

  • Dénarié J, Debellé F, Promé JC (1996) Rhizobium lipochitooligosaccharide nodulation factor: signaling molecules mediating recognition and morphogenesis. Ann Rev Biochem 65:503–535

    Article  PubMed  Google Scholar 

  • De Smet I, Vanneste S, Inzé D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887

    Article  CAS  PubMed  Google Scholar 

  • Diem HG, Dommergues YD (1990) Current and potential uses and management of Casuarinaceae in the tropics and subtropics. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and Actinorhizal plants. Academic, New York, pp 317–342

    Google Scholar 

  • Diouf D, Gherbi H, Prin Y, Franche C, Duhoux E, Bogusz D (1995) Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant-Microbe Interact 8:532–537

    CAS  Google Scholar 

  • Diouf D, Sy M-O, Gherbi H, Bogusz D, Franche C (2008) Casuarinaceae. In: Kole CR, Scorza R, Hall TC (eds) Compendium of transgenic crop plants: transgenic forest tree species, vol 9. Blackwell, Oxford, pp 279–292

    Google Scholar 

  • Duhoux E, Diouf D, Gherbi H, Franche C, Ahée J, Bogusz D (1996) Le nodule actinorhizien. Acta Bot Gall 143:593–608

    Google Scholar 

  • Endre G, Kereszt A, Devei Z, Mihacea S, Kalo P, Kiss G (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  CAS  PubMed  Google Scholar 

  • Franche C, Diouf D, Le QV, N’Diaye A, Gherbi H, Bogusz D, Gobé C, Duhoux E (1997) Genetic transformation of the actinorhizal tree Allocasuarina verticillata by Agrobacterium tumefaciens. Plant J 11:897–904

    Article  CAS  Google Scholar 

  • Geurts R, Federova E, Bisseling T (2005) Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol 8:346–352

    Article  CAS  PubMed  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008a) SymRK defines a common genetic basis for plant root endosymbioses with AM fungi, rhizobia and Frankia bacteria. 2008. Proc Natl Acad Sci USA 105:4928–4932

    Article  CAS  Google Scholar 

  • Gherbi H, Nambiar-Veetil M, Zhong C, Félix J, Autran D, Girardin R, Vaissayre V, Auguy F, Bogusz D, Franche C (2008b) Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata. Mol Plant-Microbe Interact 21:518–524

    Article  CAS  Google Scholar 

  • Guilfoyle TJ (1999) Auxin-regulated genes and promoters. In: Hooykaas PPJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier, New York, pp 423–459

    Chapter  Google Scholar 

  • Hagen G, Martin G, Li Y, Guilfoye TJ (1991) Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol 17:567–579

    Article  CAS  PubMed  Google Scholar 

  • Hammad Y, Nalin R, Marechal J, Fiasson K, Pepin R, Berry AM, Normand P, Domenach A-M (2003) A possible role for phenyl acetic acid (PAA) on Alnus glutinosa nodulation by Frankia. Plant Soil 254:193–205

    Article  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Hansen G, Larribe M, Vaubert D, Tempé J, Bierman BJ, Montoya AL, Chilton MD, Brevet J (1991) Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc Natl Acad Sci USA 88:7763–7767

    Article  CAS  PubMed  Google Scholar 

  • Hemerly AS, Bergounioux C, Van Montagu M, Inzé D, Ferreira P (1992) Gene regulating the plant cell cycle: isolation of a mitotic-like cyclin from Arabidodpsis thaliana. Proc Natl Acad Sci USA 89:3295–3299

    Article  CAS  PubMed  Google Scholar 

  • Hemerly AS, Ferreira PCG, de Almeida Engler J, van Montagu M (1993) cdc2a expression in Arabidopsis thaliana is linked with competence for cell division. Plant Cell 5:1711–1723

    Article  CAS  PubMed  Google Scholar 

  • Hocher V, Auguy F, Argout X, Laplaze L, Franche C, Bogusz D (2006) Expressed sequence—tag analysis in Casuarina glauca actinorhizal nodule and root. New Phytologist 169:681–688

    Article  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Keller B, Lamb CJ (1989) Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation. Genes Dev 3:1639–1646

    Article  CAS  PubMed  Google Scholar 

  • Kumagai H, Kouchi H (2003) Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Mol Plant-Microbe Interact 16:663–668

    Article  CAS  Google Scholar 

  • Laplaze L, Duhoux E, Franche C, Frutz T, Svistoonoff S, Bogusz D, Pawlowski K (2000a) Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells. Mol Plant-Microb Interact 13:107–112

    Article  CAS  Google Scholar 

  • Laplaze L, Ribeiro A, Franche C, Duhoux E, Auguy F, Bisseling T, Bogusz D, Pawlowski K (2000b) Characterization of a Casuarina glauca nodule-specific subtilisin-like protease gene, a homolog of Alnus glutinosa ag12. Mol Plant-Microbe Interact 13:113–117

    Article  CAS  Google Scholar 

  • Laplaze L, Gherbi H, Duhoux E, Pawlowski K, Auguy F, Guermache F, Franche C, Bogusz D (2002) Symbiotic and nonsymbiotic expression of cgMT1, a metallothionein-like gene from the actinorhizal tree Casuarina glauca. Plant Mol Biol 49:81–92

    Article  CAS  PubMed  Google Scholar 

  • Laplaze L, Svistoonoff S, Santi C, Auguy F, Franche C, Bogusz D (2008) Molecular biology of actinorhizal symbioses. In: Pawlowski K, Newton WE (eds) Nitrogen fixation research: origins and progress, vol. VI: Nitrogen-fixing Actinorhizal symbioses, vol VI. Springer, Netherlands, pp 235–259

    Chapter  Google Scholar 

  • Le QV, Bogusz D, Gherbi H, Lappartient A, Duhoux E, Franche C (1996) Agrobacterium tumefaciens gene transfer to Casuarina glauca, a tropical nitrogen-fixing tree. Plant Sci 118:57–69

    Article  CAS  Google Scholar 

  • Li J, Brunner AM, Shevchenko O, Meilan R, Ma C, Skinner JS, Strauss SH (2008) Efficient and stable transgene suppression via RNAi in field-grown poplars. Transgenic Res 17:679–694

    Article  CAS  PubMed  Google Scholar 

  • Mathesius U (2008) Auxin: at the root of nodule development? Funct Plant Biol 35:651–668

    Article  CAS  Google Scholar 

  • Mathesius U, Schlaman HR, Spaink HP, Of Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Nowak K, Sharma VK, Schulze J, Mendel RR, Hänsch R (2004) Vectors for RNAi technology in poplar. Plant Biol 6:100–104

    Article  CAS  PubMed  Google Scholar 

  • Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H (1999) Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J 18:455–463

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Martinez M, Mastronunzio JE, Mullin BC, Nieman J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tvares F, Tomkins JP, Vallenet D, Valverde C, Wall L, Wang Y, Medigue C, Benson DR (2007a) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    Article  PubMed  Google Scholar 

  • Normand P, Queiroux C, Tisa LS, Benson DR, Rouy Z, Cruveiller S, Medigue C (2007b) Exploring the genomes of Frankia. Physiol Plant 130:331–343

    Article  CAS  Google Scholar 

  • Pawlowski K (2002) Actinorhizal symbioses. In: Leigh GJ (ed) Nitrogen fixation at the millennium. Elsevier Science, New York, pp 167–189

    Chapter  Google Scholar 

  • Pawlowski K, Sprent J (2008) Comparison between actinorhizal and legume symbiosis. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 261–288

    Chapter  Google Scholar 

  • Péret B, Swarup R, Jansen L, Devos G, Auguy F, Collin M, Santi C, Hocher V, Franche C, Bogusz D, Bennett M, Laplaze L (2007) Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca. Plant Physiol 144:1852–1862

    Article  PubMed  Google Scholar 

  • Petit A, David C, Dahl GA, Ellis J, Guyon P, Casse-Delbart F, Tempé J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190:204–214

    Article  CAS  Google Scholar 

  • Phelep M, Petit A, Martin L, Duhoux E, Tempé J (1991) Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina verticillata Lam. Bio/Technology 9:461–466

    Article  CAS  Google Scholar 

  • Rawnsley T, Tisa LS (2007) Development of a physical map for three Frankia strains and a partial genetic map for Frankia EuI1c. Physiol Plant 130:427–439

    Article  CAS  Google Scholar 

  • Santi C, von Groll U, Chiurazzi M, Franche C, Pawlowski K (2002) Comparison of nodule induction in legume and actinorhizal symbioses: the induction of actinorhizal nodules does not involve ENOD40. Mol Plant-Microbe Interact 16:808–816

    Article  Google Scholar 

  • Small I (2007) RNAi for revealing and engineering plant gene functions. Curr Opin Biotechnol 18:148–153

    Article  CAS  PubMed  Google Scholar 

  • Smouni A, Laplaze L, Bogusz D, Auguy F, Duhoux E, Franche C (2002) The 35S promoter is not constitutively expressed in the transgenic tropical actinorhizal tree, Casuarina glauca. Funct Plant Biol 29:649–656

    Article  CAS  Google Scholar 

  • Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytologist 174:11–25

    Article  CAS  PubMed  Google Scholar 

  • Sprent JI, Euan KJ (2007) Legume evolution: where do nodules and Mycorrhizas fit in? Plant Physiol 144:575–581

    Article  CAS  PubMed  Google Scholar 

  • Stevens GA, Berry AM (1988) Cytokinin secretion by Frankia sp. HFPAr13 in defined medium. Plant Physiol 87:15–16

    Article  CAS  PubMed  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  CAS  PubMed  Google Scholar 

  • Svistoonoff S, Laplaze L, Auguy F, Runions CJ, Duponnois R, Haseloff J, Franche C, Bogusz D (2003) cg12 expression is specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development. Mol Plant-Microbe Interact 16:600–607

    Article  CAS  Google Scholar 

  • Svistoonoff S, Laplaze L, Liang J, Ribeiro A, Gouveia MC, Auguy F, Fevereiro P, Franche C, Bogusz D (2004) Infection-related activation of the Cg12 promoter is conserved between actinorhizal and legume-rhizobia root nodule symbiosis. Plant Physiol 136:3191–3197

    Article  CAS  PubMed  Google Scholar 

  • Sy M-O, Hocher V, Gherbi H, Laplaze L, Auguy F, Bogusz D, Franche C (2007) The cell-cycle promoter cdc2aAt from Arabidopsis thaliana is induced in the lateral roots of the actinorhizal tree Allocasuarina verticillata during the early stages of the symbiotic interaction with Frankia. Physiol Plant 130:409–417

    Article  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoye TJ (1997) Aux/IAA proteins respress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  CAS  PubMed  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Conner-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium mediated plant transformation. Mol Gen Genet 220:245–250

    Article  CAS  PubMed  Google Scholar 

  • van Ghelue M, Lovaas E, Ringo E, Solheim B (1997) Early interaction between Alnus glutinosa and Frankia strain Arl3. Production and specificity of root hair deformation factors. Physiol Plant 99:579–587

    Article  Google Scholar 

  • Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol Plant 43:383–403

    Article  CAS  Google Scholar 

  • Vessey JK, Pawlowski K, Bergman B (2005) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp and cycads. Plant Soil 274:51–78

    Article  CAS  Google Scholar 

  • Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, De Pamphilis CW, Ma H (2004) Genomic wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol 135:1084–1099

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4:29–38

    Article  CAS  PubMed  Google Scholar 

  • Wheeler CT, Henson IE, McLaughlin ME (1979) Hormones in plants bearing actinomycete nodules. Bot Gaz (Chic) 140:S52–S57

    Article  Google Scholar 

  • Wheeler CT, Crozier A, Sandberg G (1984) The biosynthesis of indole-3 acetic acid by Frankia. Plant Soil 78:99–104

    Article  CAS  Google Scholar 

  • Wilson KL, Johnson LAS (1989) Casuarinaceae. In: Flora of Australia, 3, Hamamelidales to Casuarinales. Aust. Gov. Serv., Canberra, pp 100–203

  • Yang WC, de Blank C, Meskiene I, Hirt H, Bakker J, van Kammen A, Franssen H, Bisseling T (1994) Rhizobium Nod factors reactivate the cell cycle during infection and nodule primordium formation. Plant Cell 6:1415–1426

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institut de Recherche pour le Développement (IRD) and by the Agence Nationale de la Recherche (ANR) Blanc project NewNod (ANR-06-BLAN-0095). Dr. Mathish Nambiar-Veetil was financially supported by a grant from the Department of Biotechnology, Ministry of Science and Technology, Government of India. Pr. Chonglu Zhong was supported by a DSF (Département Soutien et Formation) fellowship from IRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Svistoonoff.

Additional information

Presented at the 15th International Frankia and Actinorhizal Plants Meeting, Bariloche, Argentina, October 19–23, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svistoonoff, S., Gherbi, H., Nambiar-Veetil, M. et al. Contribution of transgenic Casuarinaceae to our knowledge of the actinorhizal symbioses. Symbiosis 50, 3–11 (2010). https://doi.org/10.1007/s13199-009-0036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-009-0036-8

Keywords

Navigation