Skip to main content

The Plant Family Brassicaceae: Introduction, Biology, And Importance

  • Chapter
  • First Online:
The Plant Family Brassicaceae

Abstract

The model plant family Brassicaceae, also known as Cruciferae, is among the largest angiospermic family belonging to the order Brassicales. The family consists of annuals, biennials as well as herbaceous perennials. The Brassicaceae family comprises many different edible species such as fodder, oilseed, vegetables, and condiments. This family is crucial for vitamins A, B1–2, B6, C, E, K, and minerals such as magnesium, iron, and calcium. Members of the family Brassicaceae produce secondary metabolites that are not only family-specific but also species- and genus-specific. The family consists of various important genera that have diverse economic as well as agronomic use in exploring the world of knowledge using them as model plants. This family has precisely documented advances in the understanding of phylogeny, polyploidy, and genomics in the members of the Brassicaceae family in a very brief and concise review. There are numerous plants having great economic and agronomic importance in family Brassicaceae to scientific and medicinal significance. Moreover, various species of Brassicaceae are explored for their pharmacological potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel KK (2005) Morphological studies on trichomes of Brassicaceae in Egypt and taxonomic significance. Acta Bot Croat 64:57–73

    Google Scholar 

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Agusdinata DB, Zhao F, Ileleji K, DeLaurentis D (2011) Life cycle assessment of potential biojet fuel production in the United States. Environ Sci Technol 45:9133–9143

    Article  CAS  PubMed  Google Scholar 

  • Ahmed NU, Park JI, Jung HJ, Chung MY, Cho YG, Nou IS (2013) Characterization of thaumatin-like gene family and identification of Pectobacterium carotovorum subsp. Carotovorum inducible genes in Brassica oleracea. Plant Breed Biotechnol 1:111–121

    Article  Google Scholar 

  • Ahmed NU, Park JI, Seo M-S, Kumar TS, Lee IH, Park BS, Nou IS (2012) Identification and expression analysis of chitinase genes related to biotic stress resistance in Brassica. Mol Biol Rep 39:3649–3657

    Article  CAS  PubMed  Google Scholar 

  • Ahuja I, Rohloff J, Bones AM (2011) Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. In: Sustainable agriculture vol 2. Springer, pp 623–670

    Google Scholar 

  • Al-Shehbaz I, Beilstein MA, Kellogg E (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120

    Article  Google Scholar 

  • Al-Shehbaz IA (1973) The biosystematics of the genus Thelypodium (Cruciferae). Contributions from the Gray Herbarium of Harvard University 3–148

    Google Scholar 

  • Al-Shehbaz IA (1984) The tribes of Cruciferae (Brassicaceae) in the southeastern United States. J Arnold Arbor 65:343–373

    Article  Google Scholar 

  • Al-Shehbaz IA (1986) The genera of Lepidieae (cruciferae; Brassicaceae) in the southeastern United States. J Arnold Arbor 67:265–311

    Article  Google Scholar 

  • Al-Shehbaz IA (2012) A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61:931–954

    Article  Google Scholar 

  • Al-Shehbaz IA (2014) A synopsis of the genus Noccaea (Coluteocarpeae, Brassicaceae). Harv Pap Bot 19:25–52

    Article  Google Scholar 

  • Al-Shehbaz IA, O’Kane SL Jr (2002) Taxonomy and phylogeny of Arabidopsis (Brassicaceae). Arabidopsis Book/Am Soc Plant Biologists 1:e0001

    Article  Google Scholar 

  • Al-Shehbaz IA, O’Kane SL Jr, Price RA (1999) Generic placement of species excluded from Arabidopsis (Brassicaceae). Novon 9:296–307

    Article  Google Scholar 

  • Al-Shehbaz IA, Warwick SI (2006) A synopsis of Smelowskia (Brassicaceae). Harv Pap Bot 11:91–100

    Article  Google Scholar 

  • Alagoz SM, TOORCHI M (2018) An investigation of some key morpho-physiological attributes and leaf proteome profile in canola (Brassica napus L.) under salinity stress. Pak J Bot 50:847–852

    CAS  Google Scholar 

  • Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trend Plant Sci 5:22–29

    Article  CAS  Google Scholar 

  • Amri E (2014) The role of selected plant families with dietary Ethnomedicinal species used as anticancer. J Medicinal Plant 2:28–39

    Google Scholar 

  • Angelini LG, Lazzeri L, Galletti S, Al Cozzani, Macchia M, Palmieri S (1998) Antigerminative activity of three glucosinolate-derived products generated by mirosinase hydrolysis. SST 26:771–780

    Google Scholar 

  • Anjum NA, Gill SS, Ahmad I, Duarte AC, Umar S, Khan NA, Pereira E (2012) Metals and metalloids accumulation variability in Brassica species–a review. Phytotechnologies: remediation of environmental contaminants CRC Press/Taylor and Francis Group, Boca Raton, USA

    Google Scholar 

  • Apel P, Horstmann C, Pfeffer M (1997) The Moricandia syndrome in species of the Brassicaceae-evolutionary aspects. Photosynthetica 33:205–215

    Article  CAS  Google Scholar 

  • Appel O, Al-Shehbaz I (2003) Cruciferae. In: Flowering Plants Dicotyledons. Springer, pp 75–174

    Google Scholar 

  • Arshad W, Sperber K, Steinbrecher T, Nichols B, Jansen VA, Leubner-Metzger G, Mummenhoff K (2019) Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual Aethionema arabicum (Brassicaceae). New Phytol 221:1434

    Article  CAS  PubMed  Google Scholar 

  • Austin DF (2003) Dye Plants and Dyeing. Econ Bot 57:288–289

    Article  Google Scholar 

  • Bailey CD, Al-Shehbaz IA, Rajanikanth G (2007) Generic limits in tribe Halimolobeae and description of the new genus Exhalimolobos (Brassicaceae). Syst Bot 32:140–156

    Article  Google Scholar 

  • Barlas NT, Irget ME, Tepecik M (2011) Mineral content of the rocket plant (Eruca sativa). Afr J Biotechnol 10:14080–14082

    Article  CAS  Google Scholar 

  • Barthlott W (1984) Microstructural features of seed surfaces. In: Heywood VH, Moree DM (eds) Current Concepts in Plant Taxonomy. Academic Press, London, pp 95–105

    Google Scholar 

  • Bednarek P (2012) Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity. ChemBioChem 13:1846–1859

    Article  CAS  PubMed  Google Scholar 

  • Bert V, Macnair M, De Laguerie P, Saumitou-Laprade P, Petit D (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol 146:225–233

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar A, Bhushan B, Malik M (2016) Traditional medicinal plants of district Bijnor, UP, India. Int J Recent Sci Res 7:10670–10677

    Google Scholar 

  • Blaxter M (1998) Caenorhabditis elegans is a nematode. Science 282:2041–2046

    Article  CAS  PubMed  Google Scholar 

  • Bowman J (2006) Molecules and morphology: comparative developmental genetics of the Brassicaceae. Plant Syst Evol 259:199–215

    Article  CAS  Google Scholar 

  • Buchanan R (1995) A dyer’s garden: from plant to pot: growing dyes for natural fibers. Interweave Press, Loveland, CO

    Google Scholar 

  • Buell CR, Last RL (2010) Twenty-first century plant biology: impacts of the Arabidopsis genome on plant biology and agriculture. Plant Physiol 154:497–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch A, Horn S, Mühlhausen A, Mummenhoff K, Zachgo S (2011) Corolla monosymmetry: evolution of a morphological novelty in the Brassicaceae family. Mol Biol Evol 29:1241–1254

    Article  PubMed  CAS  Google Scholar 

  • Calabrone L, Larocca M, Marzocco S, Martelli G, Rossano R (2015) Total phenols and flavonoids content, antioxidant capacity and lipase inhibition of root and leaf horseradish (Armoracia rusticana) extracts. Food Nutr Sci 6:64

    CAS  Google Scholar 

  • Cardone M, Mazzoncini M, Menini S, Rocco V, Senatore A, Seggiani M, Vitolo S (2003) Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterification and characterization. Biomass Bioenerg 25:623–636

    Article  CAS  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chauhan ES, Tiwari A, Singh A (2016) Phytochemical screening of red cabbage (Brassica oleracea) powder and juice-A comparative study. J Med Plants Stud 4:196–199

    Google Scholar 

  • Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25:1541–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Sun R, Hou X, Zheng H, Zhang F, Zhang Y, Liu B, Liang J, Zhuang M, Liu Y, Liu D (2016) Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet 48:1218

    Article  CAS  PubMed  Google Scholar 

  • Chiguriaeva A (1973) Pollen morphology of Cruciferae in pollen and spore morphology of recent plants (in Russian). In: Pora-3rd Int. Palynology Conf. Acad. Sci. USSR, pp 93–98

    Google Scholar 

  • Cipollini D, Cipollini K (2016) A review of garlic mustard (Alliaria petiolata, Brassicaceae) as an allelopathic plant. J Torrey Bot Soc 143:339–348

    Article  Google Scholar 

  • Clauss MJ, Dietel S, Schubert G, Mitchell-Olds T (2006) Glucosinolate and trichome defenses in a natural Arabidopsis lyrata population. J Chem Ecol 32:2351–2373

    Article  CAS  PubMed  Google Scholar 

  • Clauss MJ, Koch MA (2006) Poorly known relatives of Arabidopsis thaliana. Trends Plant Sci 11:449–459

    Article  CAS  PubMed  Google Scholar 

  • Couvreur TL, Franzke A, Al-Shehbaz IA, Bakker FT, Koch MA, Mummenhoff K (2009) Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol 27:55–71

    Article  CAS  Google Scholar 

  • Davis AR, Pylatuik JD, Paradis JC, Low NH (1998) Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta 205:305–318

    Article  CAS  PubMed  Google Scholar 

  • Dennert E (1884) Beiträge zur vergleichenden Anatomie des Laubstengels der Cruciferen. Doctoral dissertation, Universität Marburg, Marburg, Germany

    Google Scholar 

  • Devi M (2017) Biological properties of soil and nutrient uptake in cauliflower (Brassica oleracea var botrytis L.) as influenced by integrated nutrient management. J Pharmacogn Phytochem 6:325–328

    CAS  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945

    Article  CAS  PubMed  Google Scholar 

  • Du H, Shen X, Huang Y, Huang M, Zhang Z (2016) Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize. BMC Plant Biol 16:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • du Toit LJ, Le Clerc V, Briard M (2019) Genetics and genomics of carrot Biotic stress. In: The carrot genome. Springer, pp 317–362

    Google Scholar 

  • Dutta KN, Chetia P, Lahkar S, Das S (2014) Herbal plants used as diuretics: a comprehensive review. J Pharm Chem Biol Sci 2:27–32

    CAS  Google Scholar 

  • Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G, Platts AE, Heckel DG, Der JP, Wafula EK, Tang M, Hofberger JA (2015) The butterfly plant arms-race escalated by gene and genome duplications. Proc Nati Acad Sci 112:8362–8366

    Article  CAS  Google Scholar 

  • Edger PP, Tang M, Bird KA, Mayfield DR, Conant G, Mummenhoff K, Koch MA, Pires JC (2014) Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (Mustards). PLoS One 9:e101341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    Article  CAS  PubMed  Google Scholar 

  • El Sayed HESA, Aly MM (2014) Antibacterial activities of six medicinal plants used traditionally by Saudi people to treat common diseases. Br Biotechnol J 4:499

    Article  Google Scholar 

  • Eldridge T (2014) An integrative analysis of fruit shape in Capsella rubella and Arabidopsis thaliana. Doctoral dissertation, University of East Anglia, Norwich, UK

    Google Scholar 

  • Eldridge T, Łangowski Ł, Stacey N, Jantzen F, Moubayidin L, Sicard A, Southam P, Kennaway R, Lenhard M, Coen ES, Østergaard L (2016) Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy. Development 143:3394–3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdtam G, Praglowski J, Nilsson S (1963) An Introduction to a Scandinavian Pollen Flora. II. Almqvist & Wicksell, Stockholm

    Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy. New York:6–24

    Google Scholar 

  • Erum A, Aslam M, Jafri M, Ahmed MA, Yousuf AW (2017) Phytochemical and ethnopharmacological review of “Tudri surkh”(Cheiranthus cheiri). World J Pharm Res 6:352–359

    Article  CAS  Google Scholar 

  • Evivie ER, Ogwu MC, Cang W, Xu R, Li J (2019) Progress and prospects of glucosinolate pathogen resistance in some brassica plants. J Appl Nat Sci 11:556–567

    Article  CAS  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • Farooq MA, Ali B, Gill RA, Islam F, Cui P, Zhou W (2016) Breeding oil crops for sustainable production: heavy metal tolerance. In: Breeding oilseed crops for sustainable production. Elsevier, pp 19–31

    Google Scholar 

  • Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88

    Article  CAS  PubMed  Google Scholar 

  • Francis A, Warwick S (2003) The biology of Canadian weeds. 120. Neslia paniculata (L.) Desv. Can J Plant Sci 83:441–451

    Article  Google Scholar 

  • Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16:108–116

    Article  CAS  PubMed  Google Scholar 

  • Friedt W, Tu J, Fu T (2018) Academic and economic importance of Brassica napus rapeseed. In: The Brassica napus genome. Springer, pp 1–20

    Google Scholar 

  • Fu D, Mason AS, Xiao M, Yan H (2016) Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics. Plant Sci 242:37–46

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Soriano S, Al-Shehbaz I (2013) Phylogenetic relationships of mustards with multiaperturate pollen (Physarieae, Brassicaceae) based on the plastid ndhF gene: implications for morphological diversification. Syst Bot 38:178–191

    Article  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • German D, Friesen N (2014) Shehbazia (Shehbazieae, Cruciferae), a new monotypic genus and tribe of hybrid origin from Tibet. Turczaninowia 17:17–23

    Article  Google Scholar 

  • Gómez-Campo C (1980) Morphology and morpho-taxonomy of the tribe Brassiceae. Morphology and morpho-taxonomy of the tribe Brassiceae 3–31

    Google Scholar 

  • Grandont L, Cuñado N, Coriton O, Huteau V, Eber F, Chèvre AM, Grelon M, Chelysheva L, Jenczewski E (2014) Homoeologous chromosome sorting and progression of meiotic recombination in Brassica napus: ploidy does matter! Plant Cell 26:1448–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gugel R, Falk K (2006) Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can J Plant Sci 86:1047–1058

    Article  Google Scholar 

  • Gul S, Ahmed S, Gul H, Shad KF, Zia-Ul-Haq M, Badiu D (2013) The antioxidant potential of Brassica rapa L. on glutathione peroxidase, superoxide dismutase enzymes and total antioxidant status. Rev Rom Med Lab 21:161–169

    Google Scholar 

  • Gulshan AB, Dasti AA, Hussain S, Atta MI, Amin-ud-Din M (2012) Indigenous uses of medicinal plants in rural areas of Dera Ghazi Khan, Punjab, Pakistan. ARPN J Agric Biol Sci 7:750–762

    Google Scholar 

  • Hall AE, Fiebig A, Preuss D (2002a) Beyond the Arabidopsis genome: opportunities for comparative genomics. Plant Physiol 129:1439–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JC, Iltis HH, Sytsma KJ (2004) Molecular phylogenetics of core Brassicales, placement of orphan genera Emblingia, Forchhammeria, Tirania, and character evolution. Syst Bot 29:654–669

    Article  Google Scholar 

  • Hall JC, Sytsma KJ, Iltis HH (2002b) Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am J Bot 89:1826–1842

    Article  CAS  PubMed  Google Scholar 

  • Hall JC, Tisdale TE, Donohue K, Kramer EM (2006) Developmental basis of an anatomical novelty: heteroarthrocarpy in Cakile lanceolata and Erucaria erucarioides (Brassicaceae). Int J Plant Sci 167:771–789

    Article  Google Scholar 

  • Hall JC, Tisdale TE, Donohue K, Wheeler A, Al-Yahya MA, Kramer EM (2011) Convergent evolution of a complex fruit structure in the tribe Brassiceae (Brassicaceae). Am J Bot 98:1989–2003

    Article  PubMed  Google Scholar 

  • Hamburger M (2002) Isatis tinctoria—from the rediscovery of an ancient medicinal plant towards a novel anti-inflammatory phytopharmaceutical. Phytochem Rev 1:333

    Article  CAS  Google Scholar 

  • Hanf V, Gonder U (2005) Nutrition and primary prevention of breast cancer: foods, nutrients and breast cancer risk. Eur J Obstet Gynecol Reprod Biol 123:139–149

    Article  PubMed  Google Scholar 

  • Haq F (2012) The ethno botanical uses of medicinal plants of Allai Valley, Western Himalaya Pakistan. Int J Plant Res 2:21–34

    Article  Google Scholar 

  • Hasanuzzaman M, Fujita M (2012) Heavy metals in the environment: Current status, toxic effects on plants and possible phytoremediation. In: Anjum NA, Pereira MA, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. CRC Press, Boca Raton, pp 7–73

    Chapter  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Silva JAT, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop Stress and its management: perspectives and strategies. Springer, New York, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad MNV, Ozturk M (2013a) Enhancing plant productivity under salt stress—relevance of poly-omics. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: omics, signaling and responses. Springer, Berlin, pp 113–156

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013b) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer NY, USA, pp 25–87

    Chapter  Google Scholar 

  • He Z, Cheng F, Li Y, Wang X, Parkin IA, Chalhoub B, Liu S, Bancroft I (2015) Construction of Brassica A and C genome-based ordered pan-transcriptomes for use in rapeseed genomic research. Data Brief 4:357–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Henry IM, Dilkes BP, Tyagi A, Gao J, Christensen B, Comai L (2014) The boy named SUE quantitative trait locus confers increased meiotic stability to an adapted natural allopolyploid of Arabidopsis. Plant Cell 26:181–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann N, Wolf EM, Lysak MA, Koch MA (2015) A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell 27:2770–2784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu D, Zhang W, Zhang Y, Chang S, Chen L, Chen Y, Shi Y, Shen J, Meng J, Zou J (2019) Reconstituting the genome of a young allopolyploid crop, Brassica napus, with its related species. Plant Biotechnol J 17:1106–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CH, Sun R, Hu Y, Zeng L, Zhang N, Cai L, Zhang Q, Koch MA, Al-Shehbaz I, Edger PP, Pires JC (2016) Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol Biol Evol 33:394–412

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson J (1934) The families of flowering plants: arranged according to a new system based on their probable phylogeny. Clarendon Press

    Google Scholar 

  • Inamdar J, Rao N (1983) Light and scanning electron microscopic studies on trichomes of some Brassicaceae. Feddes Repertorium

    Google Scholar 

  • Initiative AG (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796

    Article  Google Scholar 

  • Jahangir M, Kim HK, Choi YH, Verpoorte R (2009) Health-affecting compounds in Brassicaceae. Compr Rev Food Sci F 8:31–43

    Article  CAS  Google Scholar 

  • Janchen E (1942) Das system der Cruciferen. Plant Syst Evol 91:1–28

    Article  Google Scholar 

  • Jiang M, Ye Z-h, Zhang H-j, Miao L-x (2019) Broccoli plants over-expressing an ERF transcription factor gene BoERF1 facilitates both salt stress and Sclerotinia stem rot resistance. J Plant Growth Regul 38:1–13

    Article  CAS  Google Scholar 

  • Johnson SN, Lopaticki G, Barnett K, Facey SL, Powell JR, Hartley SE (2016) An insect ecosystem engineer alleviates drought stress in plants without increasing plant susceptibility to an above-ground herbivore. Funct Ecol 30:894–902

    Article  Google Scholar 

  • Jonsell B (1979) New taxa of Cruciferae from East tropical Africa and Madagascar. Bot Not 132:521–535

    Google Scholar 

  • Jonsell B (1986) A monograph of Farsetia (Cruciferae). Syst Bot Ups 25:1–106

    Google Scholar 

  • Judd WS, SANDERS RW, DONOGHUE MJ (1994) Angiosperm family pairs: preliminary phylogenetic analyses. Harv Pap Bot 1:1–51

    Google Scholar 

  • Kagale S, Robinson SJ, Nixon J, Xiao R, Huebert T, Condie J, Kessler D, Clarke WE, Edger PP, Links MG, Sharpe AG (2014) Polyploid evolution of the Brassicaceae during the Cenozoic era. Plant Cell 26:2777–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaismailoğlu MC, Erol O (2019) Pollen morphology of some taxa of Thlaspi L. sensu lato (Brassicaceae) from Turkey, and its taxonomical importance. Palynology 43:244–254

    Article  Google Scholar 

  • Karl R, Koch MA (2013) A world-wide perspective on crucifer speciation and evolution: phylogenetics, biogeography and trait evolution in tribe Arabideae. Ann Bot 112:983–1001

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasem W, Ghareeb A, Marwa E (2011) Seed morphology and seed coat sculpturing of 32 taxa of family Brassicaceae. Am J Sci 7:166–178

    Google Scholar 

  • Kaur H, Sirhindi G, Bhardwaj R, Alyemeni M, Siddique KH, Ahmad P (2018) 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt-and temperature-induced oxidative stress in Brassica juncea. Sci Rep 8:8735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kayum MA, Jung H-J, Park J-I, Ahmed NU, Saha G, Yang T-J, Nou I-S (2015a) Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa. Mol Genet Gen 290:79–95

    Article  CAS  Google Scholar 

  • Kayum MA, Kim H-T, Nath UK, Park J-I, Kho KH, Cho Y-G, Nou I-S (2016a) Research on biotic and abiotic stress related genes exploration and prediction in Brassica rapa and B. oleracea: a review. Plant Breed Biotechnol 4:135–144

    Article  Google Scholar 

  • Kayum MA, Park J-I, Ahmed NU, Jung H-J, Saha G, Kang J-G, Nou I-S (2015b) Characterization and stress-induced expression analysis of Alfin-like transcription factors in Brassica rapa. Mol Genet Gen 290:1299–1311

    Article  CAS  Google Scholar 

  • Kayum MA, Park J-I, Ahmed NU, Saha G, Chung M-Y, Kang J-G, Nou I-S (2016b) Alfin-like transcription factor family: characterization and expression profiling against stresses in Brassica oleracea. Acta Physiol Plant 38:127

    Article  CAS  Google Scholar 

  • Kayum MA, Park J-I, Nath UK, Biswas MK, Kim H-T, Nou I-S (2017) Genome-wide expression profiling of aquaporin genes confer responses to abiotic and biotic stresses in Brassica rapa. BMC Plant Biol 17:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keshavarzi M, Abassian S, Sheidai M (2012) Pollen morphology of the genus Clypeola (Brassicaceae) in Iran. Phytol Balcan 18:17–24

    Google Scholar 

  • Kesseler R, Stuppy W (2006) Seeds: time capsules of life. Papadakis Publisher, London, UK, p 264

    Google Scholar 

  • Khalik KA (2002) Biosystematic studies on Brassicaceae (Cruciferae) in Egypt. Dissertation, Wageningen University, Netherlands

    Google Scholar 

  • Khalik KA, Van der Maesen L (2002) Seed morphology of some tribes of Brassicaceae (implications for taxonomy and species identification for the flora of Egypt). Blumea 47:363–383

    Google Scholar 

  • Khan R (2004) Studies on the pollen morphology of the genus Arabidopsis (Brassicaceae) from Pakistan. Pak J Bot 36:229–234

    Google Scholar 

  • Khan R, Mehmood S, Khan S, Khan A, Shah I, Bokhari T (2013) Medicinal value of indigenous flora in the vicinity of district Bannu, Khyber Pakhtunkhwa, Pakistan. Adv Pharma Ethnomed 1:7–14

    CAS  Google Scholar 

  • Kim Y-W, Jung H-J, Park J-I, Hur Y, Nou I-S (2015) Response of NBS encoding resistance genes linked to both heat and fungal stress in Brassica oleracea. Plant Physiol Biochem 86:130–136

    Article  CAS  PubMed  Google Scholar 

  • Kingsbury JM (1964) Poisonous plants of the United States and Canada. Soil Sci 98:349

    Article  Google Scholar 

  • Koch M, Kiefer C (2006) Molecules and migration: biogeographical studies in cruciferous plants. Plant Syst Evol 259:121–142

    Article  CAS  Google Scholar 

  • Koch MA, Mummenhoff K (2006) Evolution and phylogeny of the Brassicaceae. Plant Syst Evol 259:81–83

    Article  Google Scholar 

  • Koch MA, Wernisch M, Schmickl R (2008) Arabidopsis thaliana’s wild relatives: an updated overview on systematics, taxonomy and evolution. Taxon 57:933–933

    Article  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172

    Article  CAS  PubMed  Google Scholar 

  • Koubaa M, Driss D, Bouaziz F, Ghorbel RE, Chaabouni SE (2015) Antioxidant and antimicrobial activities of solvent extract obtained from rocket (Eruca sativa L.) flowers. Free Rad Antiox 5:29–34

    Article  Google Scholar 

  • Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Thakur AK, Barothia ND, Chatterjee SS (2011) Therapeutic potentials of Brassica juncea: an overview. Tang [Humanitas Medicine] 1:2.1–2.16

    Google Scholar 

  • Küpper H, Lombi E, Zhao F-J, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  PubMed  Google Scholar 

  • Lagercrantz U, Putterill J, Coupland G, Lydiate D (1996) Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9:13–20

    Article  CAS  PubMed  Google Scholar 

  • Łangowski Ł, Stacey N, Østergaard L (2016) Diversification of fruit shape in the Brassicaceae family. Plant Reprod 29:149–163

    Article  PubMed  CAS  Google Scholar 

  • Li M, Yang Y, Raza A, Yin S, Wang H, Zhang Y, Dong J, Wang G, Zhong C, Zhang H, Liu J (2020) Heterologous Expression of Arabidopsis rty Enhances Drought Tolerance in Strawberry (Fragaria× ananassa Duch.). https://doi.org/10.21203/rs.3.rs-34565/v1

  • Lin H-H, Lin K-H, Chen S-C, Shen Y-H, Lo H-F (2015) Proteomic analysis of broccoli (Brassica oleracea) under high temperature and waterlogging stresses. Bot Stud 56:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linić I, Šamec D, Grúz J, Vujčić Bok V, Strnad M, Salopek-Sondi B (2019) Involvement of phenolic acids in short-term adaptation to salinity stress is species-specific among Brassicaceae. Plants 8:155

    Article  PubMed Central  CAS  Google Scholar 

  • Liu J, Chu J, Ma C, Jiang Y, Ma Y, Xiong J, Cheng Z-M (2019) Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis. Plant Cell Rep 38:587–596

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S, Wang X (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Zhang C, Yang G, Wu J, Xie G, Zeng H, Yin C, Liu T (2009) Central composite design-based analysis of specific leaf area and related agronomic factors in cultivars of rapeseed (Brassica napus L.). Field Crops Res 111:92–96

    Google Scholar 

  • Lloyd AH, Ranoux M, Vautrin S, Glover N, Fourment J, Charif D, Choulet F, Lassalle G, Marande W, Tran J, Granier F (2014) Meiotic gene evolution: can you teach a new dog new tricks? Mol Biol Evol 31:1724–1727

    Article  CAS  PubMed  Google Scholar 

  • Lv Y, Fu S, Chen S, Zhang W, Qi C (2016) Ethylene response factor BnERF2-like (ERF2. 4) from Brassica napus L. ehances submergence tolerance and alleviates oxidative damage caused by submergence in Arabidopsis thaliana. Crop J 4:199–211

    Article  Google Scholar 

  • Lysak MA, Cheung K, Kitschke M, Bureš P (2007) Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol 145:402–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lysak MA, Koch MA (2011) Phylogeny, genome, and karyotype evolution of crucifers (Brassicaceae). In: Genetics and genomics of the Brassicaceae. Springer, pp 1–31

    Google Scholar 

  • Maciejewska-Rutkowska I, Bednorz L, Fujiki T (2007) SEM observations of pollen grains, fruits and seeds of the Pieniny Mountains [South Poland] endemic species Erysimum pieninicum [Zapal.] Pawl.[Brassicaceae]. Acta Soc Bot Pol 76

    Google Scholar 

  • Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc R Soc Lond B Biol Sci 266:2175–2179

    Article  CAS  Google Scholar 

  • Metcalfe C, Chalk L (1950) Anatomy of dicotyledons, vol 1. Clarendon Press, Oxford, UK, pp xiv + 1–724

    Google Scholar 

  • Mitchell-Olds T (2001) Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends Ecol Evol 16:693–700

    Article  Google Scholar 

  • Mittal N, Thakur S, Verma H, Kaur A (2018) Interactive effect of salinity and ascorbic acid on Brassica rapa L. plants. GJBB 7:27–29

    Google Scholar 

  • Mun J-H, Yu H-J, Park S, Park B-S (2009) Genome-wide identification of NBS-encoding resistance genes in Brassica rapa. Mol Genet Gen 282:617

    Article  CAS  Google Scholar 

  • Nag K (2013) Study of some rare medicinal wild herbs from gardens of Bhopal city, Madhya Pradesh (India). Int J Pharma Life Sci 4:2437–2439

    Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense, and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255

    Article  CAS  PubMed  Google Scholar 

  • Nahar K, Hasanuzzaman M, Suzuki T, Fujita M (2017) Polyamine-induced aluminium tolerance in mung bean: a study on antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology 26(1):58–73

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navabi Z-K, Huebert T, Sharpe AG, O’Neill CM, Bancroft I, Parkin IA (2013) Conserved microstructure of the Brassica B genome of Brassica nigra in relation to homologous regions of Arabidopsis thaliana, B. rapa and B. oleracea. BMC Genomics 14:250

    Google Scholar 

  • Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, Bailey CD, Tsiantis M (2019) Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol 222:1638–1651

    Article  PubMed  Google Scholar 

  • O’neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. Alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243

    Article  PubMed  Google Scholar 

  • Obi R, Nwanebu F, Ndubuisi U, Orji N (2009) Antibacterial qualities and phytochemical screening of the oils of Curcubita pepo and Brassica nigra. J. Med. Plants Res 3:429–432

    Google Scholar 

  • OECD (2016) Safety assessment of transgenic organisms in the environment 5. https://doi.org/10.1787/9789264253018-en

  • Osborn T, Kole C, Parkin I, Sharpe A, Kuiper M, Lydiate D, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1123–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborn TC, Butrulle DV, Sharpe AG, Pickering KJ, Parkin IA, Parker JS, Lydiate DJ (2003) Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owis A (2015) Broccoli; the green beauty: a review. J Pharma Sci Res 7:696

    CAS  Google Scholar 

  • Pachiappan S, Matheswaran S, Pushkalai P (2017) Medicinal plants for polycystic ovary syndrome: a review of phytomedicine research. Int J Herb Med 5:78–80

    Google Scholar 

  • Pan Y, Zhu M, Wang S, Ma G, Huang X, Qiao C, Wang R, Xu X, Liang Y, Lu K, Li J (2018) Genome-Wide characterization and analysis of Metallothionein family genes that function in metal stress tolerance in Brassica napus L. Int J Mol Sci 19:2181

    Article  PubMed Central  CAS  Google Scholar 

  • Parkin I, Sharpe A, Keith D, Lydiate D (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Parkin IA, Clarke WE, Sidebottom C, Zhang W, Robinson SJ, Links MG, Karcz S, Higgins EE, Fobert P, Sharpe AG (2010) Towards unambiguous transcript mapping in the allotetraploid Brassica napus. Genome 53:929–938

    Article  CAS  PubMed  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkin IA, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD, Nixon J, Krishnakumar V, Bidwell SL, Denoeud F (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15:R77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parvaiz M, Bhatti K, Nawaz K, Hussain Z, Khan R, Hussain A (2013) Ethno-botanical studies of medicinal plants of Dinga, district Gujrat, Punjab, Pakistan. World Appl Sci J 26:826–833

    Google Scholar 

  • Pavlović I, Petřík I, Tarkowská D, Lepeduš H, Vujčić Bok V, Radić Brkanac S, Novák O, Salopek-Sondi B (2018) Correlations between phytohormones and drought tolerance in selected Brassica crops: Chinese cabbage, white cabbage and kale. Int J Mol Sci 19:2866

    Article  PubMed Central  CAS  Google Scholar 

  • Perveen A, Qaiser M, Khan R (2004) Pollen flora of Pakistan–XLII. Brassicaceae Pak J Bot 36:683–700

    Google Scholar 

  • Piazza P, Bailey CD, Cartolano M, Krieger J, Cao J, Ossowski S, Schneeberger K, He F, de Meaux J, Hall N, MacLeod N (2010) Arabidopsis thaliana leaf form evolved via loss of KNOX expression in leaves in association with a selective sweep. Curr Biol 20:2223–2228

    Article  CAS  PubMed  Google Scholar 

  • Pires JC, Zhao J, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linnean Soc 82:675–688

    Article  Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci 101:18240–18245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prantl KAE, Engler A (1887) Cruciferae. W Engelmann

    Google Scholar 

  • Prasad M (2014) Antimicrobial potential of Brassicaceae family against clinical isolates. Int J Pure Appl Biosci 2:158–162

    Google Scholar 

  • Price RA, Palmer JD, Al-Shehbaz IA (1994) Systematic relationships of Arabidopsis: a molecular and morphological perspective. Cold Spring Harb Monogr Arch 27:7–19

    Google Scholar 

  • Pucciariello C, Banti V, Perata P (2012) ROS signaling as common element in low oxygen and heat stresses. Plant Physiol Biochem 59:3–10

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Khatun A, Liu L, Barkla B (2018) Brassicaceae mustards: traditional and agronomic uses in Australia and New Zealand. Molecules 23:231

    Article  PubMed Central  CAS  Google Scholar 

  • Rakow G (2004) Species origin and economic importance of Brassica. In: Brassica. Springer, pp 3–11

    Google Scholar 

  • Raval N (2016) A comprehensive review of Lepidium sativum Linn, A traditional medicinal plant. World J Pharm Pharma Sci 5:593–1601

    Google Scholar 

  • Ravikumar C (2015) Therapeutic potential of Brassica oleracea (broccoli)–a review. Int J Drug Dev Res 7:009–010

    CAS  Google Scholar 

  • Raza A, Ashraf F, Zou X, Zhang X, Tosif H (2020) Plant Adaptation and Tolerance to Environmental Stresses: Mechanisms and Perspectives. In: Hasanuzzaman M (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I. Springer, Singapore, pp 117–145

    Google Scholar 

  • Raza A, Mehmood SS, Ashraf F, Khan RSA (2019a) Genetic diversity analysis of Brassica species using PCR-based SSR markers. Gesunde Pflanz 71:1–7

    Article  CAS  Google Scholar 

  • Raza A, Mehmood SS, Shah T, Zou X, Yan L, Zhang X, Khan RS (2019d) Applications of molecular markers to develop resistance against abiotic stresses in wheat. In: Hasanuzzaman M, Nahar K, Hossain M (eds) Wheat production in changing environments. Springer, Singapore, pp 393–420

    Google Scholar 

  • Raza A, Mehmood SS, Tabassum J, Batool R (2019c) Targeting plant hormones to develop abiotic stress resistance in wheat. In: Hasanuzzaman M, Nahar K, Hossain M (eds) Wheat production in changing environments. Springer, Singapore, pp 557–577

    Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019b) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    Article  CAS  PubMed Central  Google Scholar 

  • Razmjoo K, Toriyama K, Ishii R, Hinata K (1996) Photosynthetic properties of hybrids between Diplotaxis muralis DC, a C3 species, and Moricandia arvensis (L.) DC, a C3–C4 intermediate species in Brassicaceae. Genes Genet Syst 71:189–192

    Article  Google Scholar 

  • Reusche M, Thole K, Janz D, Truskina J, Rindfleisch S, Drübert C, Polle A, Lipka V, Teichmann T (2012) Verticillium infection triggers vascular-related NAC domain 7–dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. Plant Cell 24:3823–3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert LS, Robson F, Sharpe A, Lydiate D, Coupland G (1998) Conserved structure and function of the Arabidopsis flowering time gene constans in Brassica napus. Plant Mol Biol 37:763–772

    Article  CAS  PubMed  Google Scholar 

  • Roeder AH, Yanofsky MF (2006) Fruit development in Arabidopsis. Arabidopsis Book/Am Soc Plant Biologists 4:e0075

    Article  Google Scholar 

  • Rokayya S, Li C-J, Zhao Y, Li Y, Sun C-H (2013) Cabbage (Brassica oleracea L. var. capitata) phytochemicals with antioxidant and anti-inflammatory potential. Asian Pac J Cancer Prev 14:6657–6662

    Article  Google Scholar 

  • Rollins R, Banerjee U (1979) Trichome patterns in physaria. Publication of the Bussey Institute, Harvard University 1979:65–77

    Google Scholar 

  • Rollins RC (1993) The Cruciferae of continental North America: systematics of the mustard family from the arctic to panama. Stanford University Press

    Google Scholar 

  • Román-Palacios C, Molina-Henao YF, Barker MS (2019) Polyploidy increases overall diversity despite higher turnover than diploids in the Brassicaceae. bioRxiv 717306

    Google Scholar 

  • Roosens NH, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13:208–215

    Article  CAS  PubMed  Google Scholar 

  • Rousseau-Gueutin M, Morice J, Coriton O, Huteau V, Trotoux G, Nègre S, Falentin C, Deniot G, Gilet M, Eber F, Pelé A (2017) The impact of open pollination on the structural evolutionary dynamics, meiotic behavior, and fertility of Resynthesized Allotetraploid Brassica napus L. G3: genes gen genet 7:705–717

    Google Scholar 

  • Rylott EL, Metzlaff K, Rawsthorne S (1998) Developmental and environmental effects on the expression of the C3–C4 Intermediate phenotype in Moricandia arvensis. Plant Physiol 118:1277–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeidnia S, Gohari AR (2012) Importance of Brassica napus as a medicinal food plant. J Med Plants Res 6:2700–2703

    Google Scholar 

  • Shankar S, Segaran G, Sundar RD, Settu S, Sathiavelu M (2019) Brassicaceae—a classical review on its pharmacological Activities. Int J Pharm Sci Rev Res 55:107–113

    CAS  Google Scholar 

  • Salma U, Khan T, Shah AJ (2018) Antihypertensive effect of the methanolic extract from Eruca sativa Mill., (Brassicaceae) in rats: muscarinic receptor-linked vasorelaxant and cardiotonic effects. J Ethnopharmacol 224:409–420

    Article  CAS  PubMed  Google Scholar 

  • Schulz OE (1936) Cruciferae. In: Engler A, Harms H (eds) The natural plant families. Wilhelm Engelmann, Leipzig, pp 227–658

    Google Scholar 

  • Šamec D, Salopek-Sondi B (2019) Cruciferous (Brassicaceae) vegetables. In: Nonvitamin and nonmineral nutritional supplements. Elsevier, pp 195–202

    Google Scholar 

  • Schiessl S, Samans B, Hüttel B, Reinhard R, Snowdon RJ (2014) Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus. Front. Plant Sci 5:404

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt R, Bancroft I (2011) Genetics and Genomics of the Brassicaceae. Springer, New York

    Book  Google Scholar 

  • Schmutzer T, Samans B, Dyrszka E, Ulpinnis C, Weise S, Stengel D, Colmsee C, Lespinasse D, Micic Z, Abel S, Duchscherer P (2015) Species-wide genome sequence and nucleotide polymorphisms from the model allopolyploid plant Brassica napus. Sci Data 2:150072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schranz ME, Dobeš C, Koch MA, Mitchell-Olds T (2005) Sexual reproduction, hybridization, apomixis, and polyploidization in the genus Boechera (Brassicaceae). Am J Bot 92:1797–1810

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Mitchell-Olds T (2006) Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18:1152–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah GM, Hussain M, Abbasi AM (2015) Medicinal plants used to treat respiratory tract illness in Kaghan Valley. Himalayan Region-Pakistan, SMGE book, p 5

    Google Scholar 

  • Sher Z, Khan Z, Hussain F (2011) Ethnobotanical studies of some plants of Chagharzai valley, district Buner, Pakistan. Pak J Bot 43:1445–1452

    Google Scholar 

  • Shonnard DR, Williams L, Kalnes TN (2010) Camelina-derived jet fuel and diesel: Sustainable advanced biofuels. Environ Prog Sustain Energy 29:382–392

    Article  CAS  Google Scholar 

  • Sicard A, Thamm A, Marona C, Lee YW, Wahl V, Stinchcombe JR, Wright SI, Kappel C, Lenhard M (2014) Repeated evolutionary changes of leaf morphology caused by mutations to a homeobox gene. Curr Biol 24:1880–1886

    Article  CAS  PubMed  Google Scholar 

  • Sillito D, Parkin IA, Mayerhofer R, Lydiate D, Good A (2000) Arabidopsis thaliana: a source of candidate disease-resistance genes for Brassica napus. Genome 43:452–460

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Guest D, Copeland L (2015) Associations between glucosinolates, white rust, and plant defense activators in Brassica plants: a review. Int J Veg Sci 21:297–313

    Article  Google Scholar 

  • Singh A, Sharma B, Deswal R (2018) Green silver nanoparticles from novel Brassicaceae cultivars with enhanced antimicrobial potential than earlier reported Brassicaceae members. J Trace Elem Med Bio 47:1–11

    Article  CAS  Google Scholar 

  • Singh P, Singh J (2013) Medicinal and therapeutic utilities of Raphanus sativus. Int J Plant Anim Environ Sci 3:103–105

    Google Scholar 

  • Sirhindi G, Kaur H, Bhardwaj R, Sharma P, Mushtaq R (2017) 28-Homobrassinolide potential for oxidative interface in Brassica juncea under temperature stress. Acta Physiol Plant 39:228

    Article  CAS  Google Scholar 

  • Snowdon RJ, Abbadi A, Kox T, Schmutzer T, Leckband G (2015) Heterotic haplotype capture: precision breeding for hybrid performance. Trends Plant Sci 20:410–413

    Article  CAS  PubMed  Google Scholar 

  • Soengas Fernández MdP, Sotelo Pérez T, Velasco Pazos P, Cartea González ME (2011) Antioxidant properties of Brassica vegetables. Funt Plant Sci Biotechnol 5:43–55

    Google Scholar 

  • Soengas P, Rodríguez VM, Velasco P, Cartea ME (2018) Effect of temperature stress on Antioxidant defenses in Brassica oleracea. ACS Omega 3:5237–5243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staub RE, Feng C, Onisko B, Bailey GS, Firestone GL, Bjeldanes LF (2002) Fate of indole-3-carbinol in cultured human breast tumor cells. Chem Res Toxicol 15:101–109

    Article  CAS  PubMed  Google Scholar 

  • Steinkellner H, Rabot S, Freywald C, Nobis E, Scharf G, Chabicovsky M, Knasmüller S, Kassie F (2001) Effects of cruciferous vegetables and their constituents on drug metabolizing enzymes involved in the bioactivation of DNA-reactive dietary carcinogens. Mutat Res-Fund Mol M 480:285–297

    Article  Google Scholar 

  • Streubel S, Fritz MA, Teltow M, Kappel C, Sicard A (2018) Successive duplication-divergence mechanisms at the RCO locus contributed to leaf shape diversity in the Brassicaceae. Development 145:164301

    Article  CAS  Google Scholar 

  • Suay L, Zhang D, Eber F, Jouy H, Lodé M, Huteau V, Coriton O, Szadkowski E, Leflon M, Martin OC, Falque M (2014) Crossover rate between homologous chromosomes and interference are regulated by the addition of specific unpaired chromosomes in B rassica. New Phytol 201:645–656

    Article  CAS  PubMed  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lode M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ, Chalhoub B (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112

    Article  CAS  PubMed  Google Scholar 

  • Tadege M, Sheldon CC, Helliwell CA, Stoutjesdijk P, Dennis ES, Peacock WJ (2001) Control of flowering time by FLC orthologues in Brassica napus. Plant J 28:545–553

    Article  CAS  PubMed  Google Scholar 

  • Tantawy M, Khalifa S, Hassan S, Al-Rabiai G (2004) Seed exomorphic characters of some Brassicaceae (LM and SEM study). Int J Agric Biol 6:821–830

    Google Scholar 

  • Theobald W, Krahulik J, Rollins R (1979) Trichome description and classification. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons. Clarendon Press, Oxford, pp 40–53

    Google Scholar 

  • Tomar RS, Shrivastava V (2014) Efficacy evaluation of ethanolic extract of Brassica nigra as potential antimicrobial agent against selected microorganisms. IJPHC 3:117–123

    Google Scholar 

  • Tutin T, Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (1993) Flora Europaea I, 2nd ed, Cambridge University Press, Cambridge

    Google Scholar 

  • Uprety D, Prakash S, Abrol Y (1995) Variability for photosynthesis in Brassica and allied genera. Indian J Plant Physiol 38:207–213

    Google Scholar 

  • Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411

    Article  PubMed  CAS  Google Scholar 

  • Vaughan JG, MacLeod AJ (1976) Jones BMG Biology and chemistry of the cruciferae. In: Conference on the biology of the Cruciferae (1974: London, England), Academic Press

    Google Scholar 

  • Vaughn MW, Tanurdžić M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:e174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Hayek A (1911) Entwurf eines Cruciferen-systems auf phylogenetischer Grundlage. Beih Bot Centralbl 27:127–335

    Google Scholar 

  • Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P (2011) Climate change and plant regeneration from seed. Global Change Biol 17:2145–2161

    Article  Google Scholar 

  • Wang LI, Giovannucci EL, Hunter D, Neuberg D, Su L, Christiani DC (2004) Dietary intake of cruciferous vegetables, glutathione S-transferase (GST) polymorphisms and lung cancer risk in a Caucasian population. Cancer Causes Control 15:977–985

    Article  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035

    Article  CAS  PubMed  Google Scholar 

  • Warwick S, Gugel R, Gomez-Campo C, James T (2007) Genetic variation in Eruca vesicaria (L.) Cav. Plant Genet Res 5:142–153

    Article  Google Scholar 

  • Warwick SI (2011) Brassicaceae in agriculture. In: Genetics and genomics of the Brassicaceae. Springer, pp 33–65

    Google Scholar 

  • Warwick SI, Gugel RK (2003) Genetic variation in the Crambe abyssinica-C. hispanica-C. glabrata complex. Genet Resour Crop Ev 50:291–305

    CAS  Google Scholar 

  • Warwick SI, Sauder CA, Mayer MS, Al-Shehbaz IA (2009) Phylogenetic relationships in the tribes Schizopetaleae and Thelypodieae (Brassicaceae) based on nuclear ribosomal ITS region and plastid ndh F DNA sequences. Bot 87:961–985

    Article  CAS  Google Scholar 

  • Webb J, Webb J (1983) An illustrated guide to pollen analysis. Hodder and Stoughton, London

    Google Scholar 

  • Webster N (1889) Webster’s unabridged dictionary. CC Merriam & Company

    Google Scholar 

  • Weigel D (2012) Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol 158:2–22

    Article  CAS  PubMed  Google Scholar 

  • Willis C, Hall J, Rubio de Casas R, Wang T, Donohue K (2014) Diversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae). Ann Bot 114:1675–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wink M, Van Wyk BE (2008) Mind-altering and poisonous plants of the world. Timber Press

    Google Scholar 

  • Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci 108:7908–7913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Cheng Y, Zou X, Zhang X (2016) Ethanol content in plants of Brassica napus L. correlated with waterlogging tolerance index and regulated by lactate dehydrogenase and citrate synthase. Acta Physiol Plant 38:81

    Google Scholar 

  • Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y, Yao P (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK, Carpenter EJ, Zhang Y, Chen L, Yan Z, Xie Y, Sage RF (2015) Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Mol Biol Evol 32:2001–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD, Franklin FCH, Bomblies K (2013) Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol 23:2151–2156

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Cai Y, Yu D, Liang G (2018) bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana. J Integr Plant Biol 60:691–702

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Carretero-Paulet L, Van de Peer Y (2019) Using digital organisms to investigate the effect of whole genome duplication in (artificial) evolution. bioRxiv 521112

    Google Scholar 

  • Zeng L, Zhang Q, Sun R, Kong H, Zhang N, Ma H (2014) Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat Commun 5:4956

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zeng L, Shan H, Ma H (2012) Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytol 195:923–937

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Sun B, Xu X, Chen H, Zou L, Chen G, Cao B, Chen C, Lei J (2016) Overexpression of AtEDT1/HDG11 in Chinese kale (Brassica oleracea var. alboglabra) enhances drought and osmotic stress tolerance. Front Plant Sci 7:1285

    Google Scholar 

  • Zimmer EA, Wen J (2013) Reprint of: using nuclear gene data for plant phylogenetics: progress and prospects. Mol Phylogenet Evol 66:539–550

    Article  PubMed  Google Scholar 

  • Zimmer EA, Wen J (2015) Using nuclear gene data for plant phylogenetics: progress and prospects II. Next-gen approaches J Syst Evol 53:371–379

    Article  Google Scholar 

  • Zou J, Hu D, Liu P, Raman H, Liu Z, Liu X, Parkin IA, Chalhoub B, Meng J (2016) Co-linearity and divergence of the a subgenome of Brassica juncea compared with other Brassica species carrying different a subgenomes. BMC Genom 17:18

    Article  CAS  Google Scholar 

  • Zukalová H, Vasak J (2002) The role and effects of glucosinolates of Brassica species-a review. Rost Vyroba 48:175–180

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to all the researchers whose excellent work has been cited and has helped us to prepare this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Raza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raza, A. et al. (2020). The Plant Family Brassicaceae: Introduction, Biology, And Importance. In: Hasanuzzaman, M. (eds) The Plant Family Brassicaceae. Springer, Singapore. https://doi.org/10.1007/978-981-15-6345-4_1

Download citation

Publish with us

Policies and ethics