Skip to main content

Advertisement

Log in

Paracrine Effects of Mesenchymal Stem Cells in Ischemic Stroke: Opportunities and Challenges

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs’ ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Lindsay MP, Norrving B, Sacco RL, Brainin M, Hacke W, Martins S, Pandian J, Feigin V (2019) World Stroke Organization (WSO): global stroke fact sheet 2019. SAGE Publications Sage UK, London, England

    Google Scholar 

  2. Collaborators GLRoS (2018) Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med 379(25):2429–2437

    Article  Google Scholar 

  3. Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, Culpepper WJ, Dorsey ER, Elbaz A, Ellenbogen RG (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(5):459–480

    Article  Google Scholar 

  4. Gorelick PB (2019) The global burden of stroke: persistent and disabling. Lancet Neurol 18(5):417–418

    Article  PubMed  Google Scholar 

  5. Cassidy JM, Cramer SC (2017) Spontaneous and therapeutic-induced mechanisms of functional recovery after stroke. Transl Stroke Res 8(1):33–46

    Article  CAS  PubMed  Google Scholar 

  6. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors J, Culebras A, Elkind MS, George MG, Hamdan AD, Higashida RT (2013) An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44(7):2064–2089

    Article  PubMed  Google Scholar 

  7. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN (2020) Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation E139-E596

  8. Kim JS (2019) tPA helpers in the treatment of acute ischemic stroke: are they ready for clinical use? J Stroke 21(2):160

    Article  PubMed  PubMed Central  Google Scholar 

  9. Knecht T, Borlongan C, dela Peña I (2018) Combination therapy for ischemic stroke: novel approaches to lengthen therapeutic window of tissue plasminogen activator. Brain circulation 4(3):99

    Article  PubMed  PubMed Central  Google Scholar 

  10. Doeppner TR, Bähr M, Hermann DM, Giebel B (2017) Concise review: extracellular vesicles overcoming limitations of cell therapies in ischemic stroke. Stem Cells Transl Med 6(11):2044–2052

    Article  PubMed  PubMed Central  Google Scholar 

  11. Marlier Q, Verteneuil S, Vandenbosch R, Malgrange B (2015) Mechanisms and functional significance of stroke-induced neurogenesis. Front Neurosci 9:458

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhao L-R, Willing A (2018) Enhancing endogenous capacity to repair a stroke-damaged brain: an evolving field for stroke research. Prog Neurobiol 163:5–26

    Article  PubMed  Google Scholar 

  13. Angels Font M, Arboix A, Krupinski J (2010) Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. Curr Cardiol Rev 6(3):238–244

    Article  PubMed  Google Scholar 

  14. Singh M, Pandey PK, Bhasin A, Padma M, Mohanty S (2020) Application of stem cells in stroke: a multifactorial approach. Front Neurosci

  15. Baez-Jurado E, Hidalgo-Lanussa O, Barrera-Bailón B, Sahebkar A, Ashraf GM, Echeverria V, Barreto GE (2019) Secretome of mesenchymal stem cells and its potential protective effects on brain pathologies. Mol Neurobiol 56(10):6902–6927

    Article  CAS  PubMed  Google Scholar 

  16. Cunningham CJ, Redondo-Castro E, Allan SM (2018) The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J Cereb Blood Flow Metab 38(8):1276–1292

    Article  PubMed  PubMed Central  Google Scholar 

  17. Campbell BC, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA (2019) Ischaemic stroke. Nat Rev Dis Prim 5(1):1–22

    Google Scholar 

  18. Kunz A, Iadecola C (2008) Cerebral vascular dysregulation in the ischemic brain. Handb Clin Neurol 92:283–305

    Article  Google Scholar 

  19. Woodruff TM, Thundyil J, Tang S-C, Sobey CG, Taylor SM, Arumugam TV (2011) Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 6(1):1–19

    Article  Google Scholar 

  20. Mehta S, Vemuganti R (2014) Mechanisms of stroke induced neuronal death: multiple therapeutic opportunities. Adv Anim Vet Sci 2(8):438–446

    Article  Google Scholar 

  21. Durukan A, Tatlisumak T (2007) Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 87(1):179–197

    Article  CAS  PubMed  Google Scholar 

  22. Friedenstein A, Piatetzky-Shapiro I, Petrakova K (1966) Osteogenesis in transplants of bone marrow cells. Development 16(3):381–390

    Article  CAS  Google Scholar 

  23. Fan X-L, Zhang Y, Li X, Fu Q-L (2020) Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci 1–24

  24. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121(2):368–374

    Article  PubMed  Google Scholar 

  25. Asakura A, Rudnicki MA, Komaki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68(4–5):245–253

    Article  CAS  PubMed  Google Scholar 

  26. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    Article  CAS  PubMed  Google Scholar 

  27. Gronthos S, Brahim J, Li W, Fisher L, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81(8):531–535

    Article  CAS  PubMed  Google Scholar 

  28. Griffiths MJ, Bonnet D, Janes SM (2005) Stem cells of the alveolar epithelium. Lancet 366(9481):249–260

    Article  PubMed  Google Scholar 

  29. Riekstina U, Muceniece R, Cakstina I, Muiznieks I, Ancans J (2008) Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology 58(3):153–162

    Article  CAS  PubMed  Google Scholar 

  30. Noort W, Scherjon S, Kleijburg-Van Der Keur C, Kruisselbrink A, Van Bezooijen R, Beekhuizen W, Willemze R, Kanhai H, Fibbe W (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88(8):845–852

    PubMed  Google Scholar 

  31. Paul G, Özen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E, Jansson K, Dannaeus K, Henriques-Oliveira C, Roybon L (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 7(4):e35577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem cells 21(1):105–110

    Article  PubMed  Google Scholar 

  33. Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, Qian H, Zhang X (2006) Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 30(9):681–687

    Article  CAS  PubMed  Google Scholar 

  34. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem cells 22(7):1330–1337

    Article  PubMed  Google Scholar 

  35. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  36. Kim HO, Choi S-M, Kim H-S (2013) Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Eng Regen Med 10(3):93–101

    Article  CAS  Google Scholar 

  37. Tang G, Liu Y, Zhang Z, Lu Y, Wang Y, Huang J, Li Y, Chen X, Gu X, Wang Y (2014) Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Stem Cells 32(12):3150–3162

    Article  CAS  PubMed  Google Scholar 

  38. Zhang L-L, Zhang H-T, Cai Y-Q, Han Y-J, Yao F, Yuan Z-H, Wu B-Y (2016) Anti-inflammatory effect of mesenchymal stromal cell transplantation and quercetin treatment in a rat model of experimental cerebral ischemia. Cell Mol Neurobiol 36(7):1023–1034

    Article  PubMed  Google Scholar 

  39. Sheikh AM, Yano S, Mitaki S, Haque MA, Yamaguchi S, Nagai A (2019) A Mesenchymal stem cell line (B10) increases angiogenesis in a rat MCAO model. Exp Neurol 311:182–193

    Article  CAS  PubMed  Google Scholar 

  40. Huang W, Mo X, Qin C, Zheng J, Liang Z, Zhang C (2013) Transplantation of differentiated bone marrow stromal cells promotes motor functional recovery in rats with stroke. Neurol Res 35(3):320–328

    Article  PubMed  Google Scholar 

  41. Bao X, Wei J, Feng M, Lu S, Li G, Dou W, Ma W, Ma S, An Y, Qin C (2011) Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res 1367:103–113

    Article  CAS  PubMed  Google Scholar 

  42. Friedrich MA, Martins MP, Araújo MD, Klamt C, Vedolin L, Garicochea B, Raupp EF, Ammar JSE, Machado DC, Da Costa JC (2012) Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplantation 21(1_suppl):13–21

    Article  Google Scholar 

  43. Bhasin A, Kumaran SS, Bhatia R, Mohanty S, Srivastava MP (2017) Safety and feasibility of autologous mesenchymal stem cell transplantation in chronic stroke in Indian patients. A four-year follow up. J Stem Cells Regen Med 13(1):14

  44. Steinberg GK, Kondziolka D, Wechsler LR, Lunsford LD, Coburn ML, Billigen JB, Kim AS, Johnson JN, Bates D, King B (2016) Clinical outcomes of transplanted modified bone marrow–derived mesenchymal stem cells in stroke: a phase 1/2a study. Stroke 47(7):1817–1824

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M (2001) Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189(1–2):49–57

    Article  CAS  PubMed  Google Scholar 

  46. Ding D-C, Shyu W-C, Chiang M-F, Lin S-Z, Chang Y-C, Wang H-J, Su C-Y, Li H (2007) Enhancement of neuroplasticity through upregulation of β1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiol Dis 27(3):339–353

    Article  CAS  PubMed  Google Scholar 

  47. Hofstetter C, Schwarz E, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson L (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci 99(4):2199–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu J, Song L, Jiang C, Liu Y, George J, Ye H, Cui Z (2012) Electrophysiological properties and synaptic function of mesenchymal stem cells during neurogenic differentiation–a mini-review. Int J Artif Organs 35(5):323–337

    Article  CAS  PubMed  Google Scholar 

  49. Teixeira FG, Carvalho MM, Sousa N, Salgado AJ (2013) Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 70(20):3871–3882

    Article  CAS  PubMed  Google Scholar 

  50. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11(4):367–368

    Article  CAS  PubMed  Google Scholar 

  51. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18(9):1852

    Article  PubMed Central  Google Scholar 

  52. Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM (2018) Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol 9:2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marolt Presen D, Traweger A, Gimona M, Redl H (2019) Mesenchymal stromal/stem cell-based bone regeneration therapies: from cell transplantation and tissue engineering to therapeutic secretomes and extracellular vesicles. Front Bioeng Biotechnol 7:352

    Article  PubMed  PubMed Central  Google Scholar 

  54. Phelps J, Sanati-Nezhad A, Ungrin M, Duncan NA, Sen A (2018) Bioprocessing of mesenchymal stem cells and their derivatives: toward cell-free therapeutics. Stem cells Int 2018

  55. Hsiao ST-F, Asgari A, Lokmic Z, Sinclair R, Dusting GJ, Lim SY, Dilley RJ (2012) Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem cells Dev 21(12):2189–2203

    Article  CAS  PubMed  Google Scholar 

  56. Du WJ, Chi Y, Yang ZX, Li ZJ, Cui JJ, Song BQ, Li X, Yang SG, Han ZB, Han ZC (2016) Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Res Ther 7(1):163

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zullo J, Matsumoto K, Xavier S, Ratliff B, Goligorsky MS (2015) The cell secretome, a mediator of cell-to-cell communication. Prostaglandins Other Lipid Mediat 120:17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maas SL, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27(3):172–188

    Article  CAS  PubMed  Google Scholar 

  59. Yáñez-Mó M, Siljander PR-M, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracellular Vesicles 4(1):27066

    Article  Google Scholar 

  60. Zhou Y, Yamamoto Y, Xiao Z, Ochiya T (2019) The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. J Clin Med 8(7):1025

    Article  CAS  PubMed Central  Google Scholar 

  61. Jiang W, Xu J (2020) Immune modulation by mesenchymal stem cells. Cell Prolif 53(1):e12712

    Article  PubMed  Google Scholar 

  62. Wang M, Yuan Q, Xie L (2018) Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem cells Int 2018

  63. Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem cells 26(1):99–107

    Article  CAS  PubMed  Google Scholar 

  64. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5(4):e10088

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ruan L, Wang B, ZhuGe Q, Jin K (2015) Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res 1623:166–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM (1994) Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25(9):1794–1798

    Article  CAS  PubMed  Google Scholar 

  67. Hsieh J-Y, Wang H-W, Chang S-J, Liao K-H, Lee I-H, Lin W-S, Wu C-H, Lin W-Y, Cheng S-M (2013) Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One 8(8):e72604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gale N, Thurston G, Davis S, Wiegand S, Holash J, Rudge J, Yancopoulos G (2002) Complementary and coordinated roles of the VEGFs and angiopoietins during normal and pathologic vascular formation. Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, pp 267–274

    Google Scholar 

  69. Zhang Y, Kontos CD, Annex BH, Popel AS (2019) Angiopoietin-Tie signaling pathway in endothelial cells: a computational model. iScience 20:497–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yuan J (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 14(4):469–477

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chi H, Guan Y, Li F, Chen Z (2019) The effect of human umbilical cord mesenchymal stromal cells in protection of dopaminergic neurons from apoptosis by reducing oxidative stress in the early stage of a 6-OHDA-Induced Parkinson’s Disease Model. Cell transplantation 28(1_suppl):87S-99S

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, Li T, Chen J (2015) Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain 8(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pan G-z, Yang Y, Zhang J, Liu W, Wang G-y, Zhang Y-c, Yang Q, Zhai F-x, Tai Y, Liu J-r (2012) Bone marrow mesenchymal stem cells ameliorate hepatic ischemia/reperfusion injuries via inactivation of the MEK/ERK signaling pathway in rats. J Surg Res 178(2):935–948

    Article  CAS  PubMed  Google Scholar 

  74. Zhang Y, Yu S, Tuazon JP, Lee J-Y, Corey S, Kvederis L, Kingsbury C, Kaneko Y, Borlongan CV (2019) Neuroprotective effects of human bone marrow mesenchymal stem cells against cerebral ischemia are mediated in part by an anti-apoptotic mechanism. Neural Regen Res 14(4):597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shichinohe H, Ishihara T, Takahashi K, Tanaka Y, Miyamoto M, Yamauchi T, Saito H, Takemoto H, Houkin K, Kuroda S (2015) Bone marrow stromal cells rescue ischemic brain by trophic effects and phenotypic change toward neural cells. Neurorehabil Neural Repair 29(1):80–89

    Article  PubMed  Google Scholar 

  76. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4(8):118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Komsiiska D (2019) Oxidative stress and stroke: a review of upstream and downstream antioxidant therapeutic options. Comp Clin Pathol 1–12

  78. Valle-Prieto A, Conget PA (2010) Human mesenchymal stem cells efficiently manage oxidative stress. Stem cells Dev 19(12):1885–1893

    Article  CAS  PubMed  Google Scholar 

  79. Stavely R, Nurgali K (2020) The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Transl Med

  80. Ohkouchi S, Block GJ, Katsha AM, Kanehira M, Ebina M, Kikuchi T, Saijo Y, Nukiwa T, Prockop DJ (2012) Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1. Mol Ther 20(2):417–423

    Article  CAS  PubMed  Google Scholar 

  81. Calió ML, Marinho DS, Ko GM, Ribeiro RR, Carbonel AF, Oyama LM, Ormanji M, Guirao TP, Calió PL, Reis LA (2014) Transplantation of bone marrow mesenchymal stem cells decreases oxidative stress, apoptosis, and hippocampal damage in brain of a spontaneous stroke model. Free Radical Biol Med 70:141–154

    Article  Google Scholar 

  82. He J, Liu J, Huang Y, Zhuo Y, Chen W, Duan D, Tang X, Lu M, Hu Z (2020) Olfactory Mucosa Mesenchymal Stem Cells Alleviate Cerebral Ischemia/Reperfusion Injury Via Golgi Apparatus Secretory Pathway Ca2+-ATPase Isoform1. Front Cell Dev Biol 8:1199

    Article  Google Scholar 

  83. Leu S, Lin Y-C, Yuen C-M, Yen C-H, Kao Y-H, Sun C-K, Yip H-K (2010) Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J Transl Med 8(1):1–16

    Article  Google Scholar 

  84. Dzyubenko E, Manrique-Castano D, Kleinschnitz C, Faissner A, Hermann DM (2018) Role of immune responses for extracellular matrix remodeling in the ischemic brain. Ther Adv Neurol Disord 11:1756286418818092

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ren J, Jin P, Sabatino M, Balakumaran A, Feng J, Kuznetsov SA, Klein HG, Robey PG, Stroncek DF (2011) Global transcriptome analysis of human bone marrow stromal cells (BMSC) reveals proliferative, mobile and interactive cells that produce abundant extracellular matrix proteins, some of which may affect BMSC potency. Cytotherapy 13(6):661–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Novoseletskaya E, Grigorieva O, Nimiritsky P, Basalova N, Eremichev R, Milovskaya I, Kulebyakin K, Kulebyakina M, Rodionov S, Omelyanenko N (2020) Mesenchymal Stromal Cell-Produced Components of Extracellular Matrix Potentiate Multipotent Stem Cell Response to Differentiation Stimuli. Front Cell Dev Biol 8:983

    Article  Google Scholar 

  87. Amable PR, Teixeira MVT, Carias RBV, Granjeiro JM, Borojevic R (2014) Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Res Ther 5(2):1–13

    Article  Google Scholar 

  88. Menge T, Zhao Y, Zhao J, Wataha K, Geber M, Zhang J, Letourneau P, Redell J, Shen L, Wang J (2012) Mesenchymal stem cells regulate blood brain barrier integrity in traumatic brain injury through production of the soluble factor TIMP3. Sci Transl Med 4(161):161ra150

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nam HS, Kwon I, Lee BH, Kim H, Kim J, An S, Lee O-H, Lee PH, Kim HO, Namgoong H (2015) Effects of mesenchymal stem cell treatment on the expression of matrix metalloproteinases and angiogenesis during ischemic stroke recovery. PLoS One 10(12):e0144218

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gomzikova MO, Rizvanov AA (2017) Current trends in regenerative medicine: from cell to cell-free therapy. BioNanoScience 7(1):240–245

    Article  Google Scholar 

  91. Walker PA, Harting MT, Jimenez F, Shah SK, Pati S, Dash PK, Cox CS Jr (2010) Direct intrathecal implantation of mesenchymal stromal cells leads to enhanced neuroprotection via an NFκB-mediated increase in interleukin-6 production. Stem cells Dev 19(6):867–876

    Article  CAS  PubMed  Google Scholar 

  92. Song M, Mohamad O, Gu X, Wei L, Yu SP (2013) Restoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice. Cell Transplant 22(11):2001–2015

    Article  PubMed  Google Scholar 

  93. Wang F, Tang H, Zhu J, Zhang JH (2018) Transplanting mesenchymal stem cells for treatment of ischemic stroke. Cell Transplant 27(12):1825–1834

    Article  PubMed  PubMed Central  Google Scholar 

  94. Xin H, Chopp M, Shen LH, Zhang RL, Zhang L, Zhang ZG, Li Y (2013) Multipotent mesenchymal stromal cells decrease transforming growth factor β1 expression in microglia/macrophages and down-regulate plasminogen activator inhibitor 1 expression in astrocytes after stroke. Neurosci Lett 542:81–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen X, Liang H, Xi Z, Yang Y, Shan H, Wang B, Zhong Z, Xu C, Yang G-Y, Sun Q (2020) BM-MSC transplantation alleviates intracerebral hemorrhage-induced brain injury, promotes astrocytes vimentin expression, and enhances astrocytes antioxidation via the Cx43/Nrf2/HO-1 axis. Front cell Dev Biol 8:302

    Article  PubMed  PubMed Central  Google Scholar 

  96. Giunti D, Parodi B, Usai C, Vergani L, Casazza S, Bruzzone S, Mancardi G, Uccelli A (2012) Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1. Stem cells 30(9):2044–2053

    Article  CAS  PubMed  Google Scholar 

  97. Noh MY, Lim SM, Oh K-W, Cho K-A, Park J, Kim K-S, Lee S-J, Kwon M-S, Kim SH (2016) Mesenchymal stem cells modulate the functional properties of microglia via TGF-β secretion. Stem Cells Transl Med 5(11):1538–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu Y, Zeng R, Wang Y, Huang W, Hu B, Zhu G, Zhang R, Li F, Han J, Li Y (2019) Mesenchymal stem cells enhance microglia M2 polarization and attenuate neuroinflammation through TSG-6. Brain Res 1724:146422

    Article  CAS  PubMed  Google Scholar 

  99. Lin W, Hsuan YC-Y, Lin M-T, Kuo T-W, Lin C-H, Su Y-C, Niu K-C, Chang C-P, Lin H-J (2017) Human umbilical cord mesenchymal stem cells preserve adult newborn neurons and reduce neurological injury after cerebral ischemia by reducing the number of hypertrophic microglia/macrophages. Cell Transplant 26(11):1798–1810

    Article  PubMed  Google Scholar 

  100. Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, Chopp M (2006) Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 137(2):393–399

    Article  CAS  PubMed  Google Scholar 

  101. Tobin MK, Stephen TK, Lopez KL, Pergande MR, Bartholomew AM, Cologna SM, Lazarov O (2020) Activated mesenchymal stem cells induce recovery following stroke via regulation of inflammation and oligodendrogenesis. J Am Heart Assoc 9(7):e013583

    Article  PubMed  PubMed Central  Google Scholar 

  102. Samper Agrelo I, Schira-Heinen J, Beyer F, Groh J, Bütermann C, Estrada V, Poschmann G, Bribian A, Jadasz JJ, Lopez-Mascaraque L (2020) Secretome analysis of mesenchymal stem cell factors fostering oligodendroglial differentiation of neural stem cells in vivo. Int J Mol Sci 21(12):4350

    Article  PubMed Central  Google Scholar 

  103. Li S, Guan H, Zhang Y, Li S, Li K, Hu S, Zuo E, Zhang C, Zhang X, Gong G (2021) Bone marrow mesenchymal stem cells promote remyelination in spinal cord by driving oligodendrocyte progenitor cell differentiation via Tnfα/Relb-Hes1 pathway: a rat model study of 2, 5-hexanedione-induced neurotoxicity.

  104. Liu Z, Li Y, Zhang ZG, Cui X, Cui Y, Lu M, Savant-Bhonsale S, Chopp M (2010) Bone marrow stromal cells enhance inter-and intracortical axonal connections after ischemic stroke in adult rats. J Cereb Blood Flow Metab 30(7):1288–1295

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, Lu M, Savant-Bhonsale S, Chopp M (2007) One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke 38(7):2150–2156

    Article  PubMed  Google Scholar 

  106. Shen LH, Li Y, Gao Q, Savant-Bhonsale S, Chopp M (2008) Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain. Glia 56(16):1747–1754

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhang L, Yi L, Chopp M, Kramer BC, Romanko M, Gosiewska A, Hong K (2013) Intravenous administration of human umbilical tissue-derived cells improves neurological function in aged rats after embolic stroke. Cell Transplant 22(9):1569–1576

    Article  PubMed  Google Scholar 

  108. Guo Y, Peng Y, Zeng H, Chen G (2021) Progress in mesenchymal stem cell therapy for ischemic stroke. Stem Cells Int 2021

  109. Liu Y, Zhang Y, Lin L, Lin F, Li T, Du H, Chen R, Zheng W, Liu N (2013) Effects of bone marrow-derived mesenchymal stem cells on the axonal outgrowth through activation of PI3K/AKT signaling in primary cortical neurons followed oxygen-glucose deprivation injury. PLoS One 8(11):e78514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Al-Shaibani MB, Wang Xn, Lovat PE, Dickinson AM (2016) Cellular therapy for wounds: applications of mesenchymal stem cells in wound healing. Wound healing–new insights into ancient challenges London: InTech 99–131

  111. Wei X, Du Z, Zhao L, Feng D, Wei G, He Y, Tan J, Lee WH, Hampel H, Dodel R (2009) IFATS collection: The conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem cells 27(2):478–488

    Article  CAS  PubMed  Google Scholar 

  112. Cho YJ, Song HS, Bhang S, Lee S, Kang BG, Lee JC, An J, Cha CI, Nam DH, Kim BS (2012) Therapeutic effects of human adipose stem cell-conditioned medium on stroke. J Neurosci Res 90(9):1794–1802

    Article  CAS  PubMed  Google Scholar 

  113. Egashira Y, Sugitani S, Suzuki Y, Mishiro K, Tsuruma K, Shimazawa M, Yoshimura S, Iwama T, Hara H (2012) The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Res 1461:87–95

    Article  CAS  PubMed  Google Scholar 

  114. Tsai M-J, Tsai S-K, Hu B-R, Liou D-Y, Huang S-L, Huang M-C, Huang W-C, Cheng H, Huang S-S (2014) Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J Biomed Sci 21(1):1–12

    Article  Google Scholar 

  115. Hao P, Liang Z, Piao H, Ji X, Wang Y, Liu Y, Liu R, Liu J (2014) Conditioned medium of human adipose-derived mesenchymal stem cells mediates protection in neurons following glutamate excitotoxicity by regulating energy metabolism and GAP-43 expression. Metab Brain Dis 29(1):193–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhao Q, Hu J, Xiang J, Gu Y, Jin P, Hua F, Zhang Z, Liu Y, Zan K, Zhang Z (2015) Intranasal administration of human umbilical cord mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke. Brain Res 1624:489–496

    Article  CAS  PubMed  Google Scholar 

  117. Cui C, Cui Y, Gao J, Li R, Jiang X, Tian Y, Wang K, Cui J (2017) Intraparenchymal treatment with bone marrow mesenchymal stem cell-conditioned medium exerts neuroprotection following intracerebral hemorrhage. Mol Med Rep 15(4):2374–2382

    Article  CAS  PubMed  Google Scholar 

  118. Seo HG, Yi Y, Oh B-M, Paik N-J (2017) Neuroprotective effect of secreted factors from human adipose stem cells in a rat stroke model. Neurol Res 39(12):1114–1124

    Article  CAS  PubMed  Google Scholar 

  119. Xiang J, Hu J, Shen T, Liu B, Hua F, Zan K, Zu J, Cui G, Ye X (2017) Bone marrow mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke in type 2 diabetic rats. Neurosci Lett 644:62–66

    Article  CAS  PubMed  Google Scholar 

  120. Faezi M, Maleki SN, Aboutaleb N, Nikougoftar M (2018) The membrane mesenchymal stem cell derived conditioned medium exerts neuroprotection against focal cerebral ischemia by targeting apoptosis. J Chem Neuroanat 94:21–31

    Article  CAS  PubMed  Google Scholar 

  121. Jiang RH, Wu CJ, Xu XQ, Lu SS, Zu QQ, Zhao LB, Wang J, Liu S, Shi HB (2019) Hypoxic conditioned medium derived from bone marrow mesenchymal stromal cells protects against ischemic stroke in rats. J Cell Physiol 234(2):1354–1368

    Article  CAS  PubMed  Google Scholar 

  122. Nazarinia D, Aboutaleb N, Gholamzadeh R, Maleki SN, Mokhtari B, Nikougoftar M (2019) Conditioned medium obtained from human amniotic mesenchymal stem cells attenuates focal cerebral ischemia/reperfusion injury in rats by targeting mTOR pathway. J Chem Neuroanat 102:101707

    Article  CAS  PubMed  Google Scholar 

  123. Cunningham CJ, Wong R, Barrington J, Tamburrano S, Pinteaux E, Allan SM (2020) Systemic conditioned medium treatment from interleukin-1 primed mesenchymal stem cells promotes recovery after stroke. Stem Cell Res Ther 11(1):1–12

    Article  Google Scholar 

  124. Asgari Taei A, Dargahi L, Nasoohi S, Hassanzadeh G, Kadivar M, Farahmandfar M (2021) The conditioned medium of human embryonic stem cell-derived mesenchymal stem cells alleviates neurological deficits and improves synaptic recovery in experimental stroke. J Cell Physiol 236(3):1967–1979

    Article  CAS  PubMed  Google Scholar 

  125. Taei AA, Nasoohi S, Hassanzadeh G, Kadivar M, Dargahi L, Farahmandfar M (2021) Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model. Biomed Pharmacother 140:111709

    Article  Google Scholar 

  126. Castelli V, Antonucci I, d’Angelo M, Tessitore A, Zelli V, Benedetti E, Ferri C, Desideri G, Borlongan C, Stuppia L (2021) Neuroprotective effects of human amniotic fluid stem cells-derived secretome in an ischemia/reperfusion model. Stem Cells Transl Med 10(2):251–266

    Article  CAS  PubMed  Google Scholar 

  127. Riazifar M, Pone EJ, Lötvall J, Zhao W (2017) Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol 57:125–154

    Article  CAS  PubMed  Google Scholar 

  128. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracellular Vesicles 7(1):1535750

    Article  Google Scholar 

  129. Mentkowski KI, Snitzer JD, Rusnak S, Lang JK (2018) Therapeutic potential of engineered extracellular vesicles. AAPS J 20(3):50

    Article  PubMed  Google Scholar 

  130. Yuana Y, Sturk A, Nieuwland R (2013) Extracellular vesicles in physiological and pathological conditions. Blood Rev 27(1):31–39

    Article  CAS  PubMed  Google Scholar 

  131. Baek G, Choi H, Kim Y, Lee HC, Choi C (2019) Mesenchymal stem cell-derived extracellular vesicles as therapeutics and as a drug delivery platform. Stem Cells Transl Med 8(9):880–886

    Article  PubMed  PubMed Central  Google Scholar 

  132. Caruso S, Poon IK (2018) Apoptotic cell-derived extracellular vesicles: more than just debris. Front Immunol 9:1486

    Article  PubMed  PubMed Central  Google Scholar 

  133. Willms E, Johansson HJ, Mäger I, Lee Y, Blomberg KEM, Sadik M, Alaarg A, Smith C, Lehtiö J, El Andaloussi SJSr (2016) Cells release subpopulations of exosomes with distinct molecular and biological properties. 6(1):1–12

  134. Gu H, Chen C, Hao X, Wang C, Zhang X, Li Z, Shao H, Zeng H, Yu Z, Xie LJTJoci (2016) Sorting protein VPS33B regulates exosomal autocrine signaling to mediate hematopoiesis and leukemogenesis. 126(12):4537–4553

  135. Butler JT, Abdelhamed S, Kurre PJH (2018) Extracellular vesicles in the hematopoietic microenvironment. 103(3):382

  136. Ryan ST, Hosseini-Beheshti E, Afrose D, Ding X, Xia B, Grau GE, Little CB, McClements L, Li JJJIJoMS (2021) Extracellular vesicles from mesenchymal stromal cells for the treatment of inflammation-related conditions. 22(6):3023

  137. Basso M, Bonetto VJFin (2016) Extracellular vesicles and a novel form of communication in the brain. 10:127

  138. Battistelli M, Falcieri EJB (2020) Apoptotic bodies: particular extracellular vesicles involved in intercellular communication. 9 (1):21

  139. Mo Y, Sun Y-Y, Liu K-Y (2020) Autophagy and inflammation in ischemic stroke. Neural Regen Res 15(8):1388

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wang M, Lee H, Elkin K, Bardhi R, Guan L, Chandra A, Geng X, Ding Y (2020) Detrimental and beneficial effect of autophagy and a potential therapeutic target after ischemic stroke. Evid Based Complement Alternat Med 2020

  141. Jiang S, Dupont N, Castillo EF, Deretic V (2013) Secretory versus degradative autophagy: unconventional secretion of inflammatory mediators. J Innate Immun 5(5):471–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Leidal AM, Debnath J (2021) Emerging roles for the autophagy machinery in extracellular vesicle biogenesis and secretion. FASEB BioAdvances 3(5):377–386

    Article  PubMed  PubMed Central  Google Scholar 

  143. Guo H, Chitiprolu M, Roncevic L, Javalet C, Hemming FJ, Trung MT, Meng L, Latreille E, de Souza CT, McCulloch D (2017) Atg5 disassociates the V1V0-ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy. Dev Cell 43(6):716-730. e717

    Article  CAS  PubMed  Google Scholar 

  144. Murrow L, Malhotra R, Debnath J (2015) ATG12–ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol 17(3):300–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Davis C, Savitz SI, Satani N (2021) Mesenchymal stem cell derived extracellular vesicles for repairing the neurovascular unit after ischemic stroke. Cells 10(4):767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Almeria C, Weiss R, Roy M, Tripisciano C, Kasper C, Weber V, Egger D (2019) Hypoxia conditioned mesenchymal stem cell-derived extracellular vesicles induce increased vascular tube formation in vitro. Front Bioeng Biotechnol 292

  147. Gregorius J, Wang C, Stambouli O, Hussner T, Qi Y, Tertel T, Börger V, Mohamud Yusuf A, Hagemann N, Yin D (2021) Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice. Basic Res Cardiol 116(1):1–19

    Article  Google Scholar 

  148. Mulcahy LA, Pink RC, Carter DRF (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracellular Vesicles 3(1):24641

    Article  Google Scholar 

  149. Maumus M, Rozier P, Boulestreau J, Jorgensen C, Noël D (2020) Mesenchymal stem cell-derived extracellular vesicles: Opportunities and challenges for clinical translation. Front Bioeng Biotechnol 8:997

    Article  PubMed  PubMed Central  Google Scholar 

  150. Li Y, Cheng Q, Hu G, Deng T, Wang Q, Zhou J, Su X (2018) Extracellular vesicles in mesenchymal stromal cells: A novel therapeutic strategy for stroke. Exp Ther Med 15(5):4067–4079

    PubMed  PubMed Central  Google Scholar 

  151. Dabrowska S, Andrzejewska A, Lukomska B, Janowski M (2019) Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J Neuroinflammation 16(1):1–17

    Article  Google Scholar 

  152. Gowen A, Shahjin F, Chand S, Odegaard KE, Yelamanchili SV (2020) Mesenchymal stem cell-derived extracellular vesicles: challenges in clinical applications. Front Cell Dev Biol 8:149

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kim D-k, Nishida H, An SY, Shetty AK, Bartosh TJ, Prockop DJ (2016) Chromatographically isolated CD63+ CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci 113(1):170–175

    Article  CAS  PubMed  Google Scholar 

  154. Doeppner TR, Herz J, Görgens A, Schlechter J, Ludwig A-K, Radtke S, de Miroschedji K, Horn PA, Giebel B, Hermann DM (2015) Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med 4(10):1131–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang S-S, Jia J, Wang Z (2018) Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in Alzheimer’s disease mice. J Alzheimers Dis 61(3):1005–1013

    Article  CAS  PubMed  Google Scholar 

  156. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33(11):1711–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402

    Article  CAS  Google Scholar 

  158. Venkat P, Chopp M, Chen J (2018) Cell-based and exosome therapy in diabetic stroke. Stem Cells Transl Med 7(6):451–455

    Article  PubMed  PubMed Central  Google Scholar 

  159. Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, Zhang ZG, Chopp M (2013) MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem cells 31(12):2737–2746

    Article  CAS  PubMed  Google Scholar 

  160. Xin H, Katakowski M, Wang F, Qian J-Y, Liu XS, Ali MM, Buller B, Zhang ZG, Chopp MJS (2017) MicroRNA-17–92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. 48(3):747–753

  161. Xin H, Wang F, Li Y, Lu Q-e, Cheung WL, Zhang Y, Zhang ZG, Chopp M (2017) Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant 26(2):243–257

    Article  PubMed  PubMed Central  Google Scholar 

  162. Lin S-S, Zhu B, Guo Z-K, Huang G-Z, Wang Z, Chen J, Wei X-J, Li Q (2014) Bone marrow mesenchymal stem cell-derived microvesicles protect rat pheochromocytoma PC12 cells from glutamate-induced injury via a PI3K/Akt dependent pathway. Neurochem Res 39(5):922–931

    Article  CAS  PubMed  Google Scholar 

  163. Ophelders DR, Wolfs TG, Jellema RK, Zwanenburg A, Andriessen P, Delhaas T, Ludwig A-K, Radtke S, Peters V, Janssen L (2016) Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med 5(6):754–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chen K-H, Chen C-H, Wallace CG, Yuen C-M, Kao G-S, Chen Y-L, Shao P-L, Chen Y-L, Chai H-T, Lin K-C (2016) Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget 7(46):74537

    Article  PubMed  PubMed Central  Google Scholar 

  165. Lee JY, Kim E, Choi S-M, Kim D-W, Kim KP, Lee I, Kim H-S (2016) Microvesicles from brain-extract—treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. Sci Rep 6(1):1–14

    Google Scholar 

  166. Otero-Ortega L, Laso-García F, del Carmen Gómez-de Frutos M, Rodríguez-Frutos B, Pascual-Guerra J, Fuentes B, Díez-Tejedor E, Gutiérrez-Fernández M (2017) White matter repair after extracellular vesicles administration in an experimental animal model of subcortical stroke. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  167. Yang J, Zhang X, Chen X, Wang L, Yang GJMT-NA (2017) Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. 7:278–287

  168. Deng M, Xiao H, Zhang H, Peng H, Yuan H, Xu Y, Zhang G, Hu Z (2017) Mesenchymal stem cell-derived extracellular vesicles ameliorates hippocampal synaptic impairment after transient global ischemia. Front Cell Neurosci 11:205

    Article  PubMed  PubMed Central  Google Scholar 

  169. Nalamolu KR, Venkatesh I, Mohandass A, Klopfenstein JD, Pinson DM, Wang DZ, Veeravalli KK (2019) Exosomes treatment mitigates ischemic brain damage but does not improve post-stroke neurological outcome. Cell Physiol Biochem 52(6):1280

    Article  CAS  PubMed  Google Scholar 

  170. Geng W, Tang H, Luo S, Lv Y, Liang D, Kang X, Hong W (2019) Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am J Transl Res 11(2):780

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Medalla M, Chang W, Calderazzo SM, Go V, Tsolias A, Goodliffe JW, Pathak D, De Alba D, Pessina M, Rosene DL (2020) Treatment with mesenchymal-derived extracellular vesicles reduces injury-related pathology in pyramidal neurons of monkey perilesional ventral premotor cortex. J Neurosci 40(17):3385–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Venkat P, Zacharek A, Landschoot-Ward J, Wang F, Culmone L, Chen Z, Chopp M, Chen J (2020) Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Exp Neurol 334:113456

    Article  CAS  PubMed  Google Scholar 

  173. Go V, Bowley BG, Pessina MA, Zhang ZG, Chopp M, Finklestein SP, Rosene DL, Medalla M, Buller B, Moore TL (2020) Extracellular vesicles from mesenchymal stem cells reduce microglial-mediated neuroinflammation after cortical injury in aged Rhesus monkeys. Geroscience 42(1):1–17

    Article  CAS  PubMed  Google Scholar 

  174. Hess DC, Wechsler LR, Clark WM, Savitz SI, Ford GA, Chiu D, Yavagal DR, Uchino K, Liebeskind DS, Auchus AP (2017) Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 16(5):360–368

    Article  PubMed  Google Scholar 

  175. Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, Singh KK, Nair V, Sarkar RS, Gorthi SP (2014) Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke 45(12):3618–3624

    Article  CAS  PubMed  Google Scholar 

  176. Li W, Shi L, Hu B, Hong Y, Zhang H, Li X, Zhang YJFiCN (2021) Mesenchymal stem cell-based therapy for stroke: current understanding and challenges. 15:628940

  177. https://clinicaltrials.gov/ct2/show/NCT05008588. Accessed 26 June 2022

  178. https://clinicaltrials.gov/ct2/show/NCT03384433. Accessed 25 June 2022

  179. El Moshy S, Radwan IA, Rady D, Abbass M, El-Rashidy AA, Sadek KM, Dörfer CE, Fawzy El-Sayed KM (2020) Dental stem cell-derived secretome/conditioned medium: the future for regenerative therapeutic applications. Stem cells Int 2020

  180. Teixeira FG, Salgado AJ (2020) Mesenchymal stem cells secretome: current trends and future challenges. Neural Regen Res 15(1):75

    Article  PubMed  Google Scholar 

  181. Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS, Donnenberg AD (2013) Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie 95(12):2235–2245

    Article  CAS  PubMed  Google Scholar 

  182. Sagaradze GD, Nimiritsky PP, Akopyan ZA, Makarevich PI, Efimenko AY (2018) Cell-free therapeutics from components secreted by mesenchymal stromal cells as a novel class of biopharmaceuticals. IntechOpen London

  183. Clabaut A, Grare C, Léger T, Hardouin P, Broux O (2015) Variations of secretome profiles according to conditioned medium preparation: the example of human mesenchymal stem cell-derived adipocytes. Electrophoresis 36(20):2587–2593

    Article  CAS  PubMed  Google Scholar 

  184. Kusuma GD, Carthew J, Lim R, Frith JE (2017) Effect of the microenvironment on mesenchymal stem cell paracrine signaling: opportunities to engineer the therapeutic effect. Stem cells Dev 26(9):617–631

    Article  CAS  PubMed  Google Scholar 

  185. Benavides-Castellanos MP, Garzón-Orjuela N, Linero I (2020) Effectiveness of mesenchymal stem cell-conditioned medium in bone regeneration in animal and human models: a systematic review and meta-analysis. Cell Regeneration 9:1–22

    Article  Google Scholar 

  186. Tokita Y, Tang X-L, Li Q, Wysoczynski M, Hong KU, Nakamura S, Wu W-J, Xie W, Li D, Hunt G (2016) Repeated administrations of cardiac progenitor cells are markedly more effective than a single administration: a new paradigm in cell therapy. Circ Res 119(5):635–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wysoczynki M, Khan A, Bolli R (2018) New paradigms in cell therapy: repeated dosing, intravenous delivery, immunomodulatory actions, and new cell types. Circ Res 123(2):138–158

    Article  CAS  PubMed Central  Google Scholar 

  188. Meiliana A, Dewi NM, Wijaya A (2019) Mesenchymal stem cell secretome: cell-free therapeutic strategy in regenerative medicine. Indones Biomed J 11(2):113–124

    Article  Google Scholar 

  189. Ahangar P, Mills SJ, Cowin AJ (2020) Mesenchymal stem cell secretome as an emerging cell-free alternative for improving wound repair. Int J Mol Sci 21(19):7038

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by Research Affairs (Grant No. 15695) of Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

A. Asgari Taei: performed the literature review, wrote the first draft of the manuscript, and designed the table and figures; P. Khodabakhsh: designed the table and figures; P. Khodabakhsh, S. Nasoohi, M. Farahmandfar, and L. Dargahi: overviewed the latest state of knowledge, revised and edited the manuscript; L. Dargahi: supervised the review process. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Leila Dargahi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors whose names appear on the submission approved the final manuscript and agreed to be published.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari Taei, A., Khodabakhsh, P., Nasoohi, S. et al. Paracrine Effects of Mesenchymal Stem Cells in Ischemic Stroke: Opportunities and Challenges. Mol Neurobiol 59, 6281–6306 (2022). https://doi.org/10.1007/s12035-022-02967-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02967-4

Keywords

Navigation