Skip to main content

Advertisement

Log in

Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of bioactive molecules—besides microRNAs, hormones, and neurotrophins—with anti-inflammatory, immunoregulatory, angiogenic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue. Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their impact on glial cells and brain pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ASCs:

Adult stem cells

AFSCs:

Amniotic fluid stem cells

CNS:

Central nervous system

CM-A-MSC:

Conditioned medium of mesenchymal cells derived from adipose tissue

BM-MSC:

Conditioned medium of mesenchymal stem cells derived from bone marrow

CM-MSCs:

Conditioned medium of mesenchymal stem cells

DPSCs:

Dental plug stem cells

ESCs:

Embryonic stem cells

EpSCs:

Epithelial stem cells

FSC:

Fetal stem cells

HSC:

Hematopoietic stem cells

HSC:

Hepatic stem cells

HI:

Hypoxic-ischemic

IPSC:

Induced pluripotent stem cells

A-MSC:

Mesenchymal cells derived from adipose tissue

MSCs:

Mesenchymal stem cells

BM-MSC:

Mesenchymal stem cells derived from bone marrow

hUCB-MSC:

Mesenchymal stem cells of the human umbilical cord

L-MSC:

Mesenchymal stromal cells derived from the limbus

NSC:

Neural stem cells

PSC:

Pluripotent stem cells

ROS:

Oxygen species

RNS:

Reactive nitrogen species

SCI:

Spinal cord injury

TBI:

Traumatic brain injury

UCB:

Umbilical cord blood

UCPVC:

Umbilical cord stem cells

UCPVC:

Umbilical cord stem cells

WJSC:

Wharton gelatin stem cells

References

  1. Mahmoudifar N, Doran PM (2015) Mesenchymal stem cells derived from human adipose tissue. Methods Mol Biol 1340:53–64. https://doi.org/10.1007/978-1-4939-2938-2_4

    Article  CAS  PubMed  Google Scholar 

  2. Gardner OF, Alini M, Stoddart MJ (2015) Mesenchymal stem cells derived from human bone marrow. Methods Mol Biol 1340:41–52. https://doi.org/10.1007/978-1-4939-2938-2_3

    Article  CAS  PubMed  Google Scholar 

  3. Phelps J, Sanati-Nezhad A, Ungrin M, Duncan NA, Sen A (2018) Bioprocessing of mesenchymal stem cells and their derivatives: toward cell-free therapeutics. Stem Cells Int 2018:9415367. https://doi.org/10.1155/2018/9415367

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chagastelles PC, Nardi NB, Camassola M (2010) Biology and applications of mesenchymal stem cells. Sci Prog 93(Pt 2):113–127

    Article  PubMed  Google Scholar 

  5. Zheng G, Huang L, Tong H, Shu Q, Hu Y, Ge M, Deng K, Zhang L et al (2014) Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res 15:39. https://doi.org/10.1186/1465-9921-15-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DiNunzio JC, Williams RO 3rd (2008) CNS disorders—current treatment options and the prospects for advanced therapies. Drug Dev Ind Pharm 34(11):1141–1167. https://doi.org/10.1080/03639040802020536

    Article  CAS  PubMed  Google Scholar 

  7. Shoichet MS, Tate CC, Baumann MD, LaPlaca MC (2008) Strategies for regeneration and repair in the injured central nervous system. In: Reichert WM (ed) Indwelling neural implants: strategies for contending with the in vivo environment. Frontiers in neuroengineering. Boca Raton (FL),  CRC Press/Taylor & Francis.

  8. Zhu Y, Chen X, Yang X, Ei-Hashash A (2018) Stem cells in lung repair and regeneration: current applications and future promise. J Cell Physiol 233(10):6414–6424. https://doi.org/10.1002/jcp.26414

    Article  CAS  PubMed  Google Scholar 

  9. Galindo LT, Filippo TR, Semedo P, Ariza CB, Moreira CM, Camara NO, Porcionatto MA (2011) Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol Res Int 2011:564089. https://doi.org/10.1155/2011/564089

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shologu N, Scully M, Laffey JG, O'Toole D (2018) Human mesenchymal stem cell secretome from bone marrow or adipose-derived tissue sources for treatment of hypoxia-induced pulmonary epithelial injury. Int J Mol Sci 19(10). pii: E2996https://doi.org/10.3390/ijms19102996

  11. Phan J, Kumar P, Hao D, Gao K, Farmer D, Wang A (2018) Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. J Extracell Vesicles 7(1):1522236. https://doi.org/10.1080/20013078.2018.1522236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Venugopal C, Shobha K, Rai KS, Pinnelli VB, Kutty BM, Dhanushkodi A (2018) Neuroprotection by human dental pulp mesenchymal stem cells: from billions to nano. Curr Gene Ther 18:307–323. https://doi.org/10.2174/1566523218666180913152615

    Article  CAS  PubMed  Google Scholar 

  13. Chen YX, Zeng ZC, Sun J, Zeng HY, Huang Y, Zhang ZY (2015) Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. J Radiat Res 56(4):700–708. https://doi.org/10.1093/jrr/rrv026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zagoura DS, Roubelakis MG, Bitsika V, Trohatou O, Pappa KI, Kapelouzou A, Antsaklis A, Anagnou NP (2012) Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut 61(6):894–906. https://doi.org/10.1136/gutjnl-2011-300908

    Article  CAS  PubMed  Google Scholar 

  15. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18 (9). pii: E1852 https://doi.org/10.3390/ijms18091852

  16. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98

    Article  PubMed  Google Scholar 

  17. Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, Ludlow JW, Stricker DM et al (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol 212(3):702–709. https://doi.org/10.1002/jcp.21068

    Article  CAS  PubMed  Google Scholar 

  18. Linero I, Chaparro O (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One 9(9):e107001. https://doi.org/10.1371/journal.pone.0107001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kupcova Skalnikova H (2013) Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 95(12):2196–2211. https://doi.org/10.1016/j.biochi.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  20. Hao P, Liang Z, Piao H, Ji X, Wang Y, Liu Y, Liu R, Liu J (2014) Conditioned medium of human adipose-derived mesenchymal stem cells mediates protection in neurons following glutamate excitotoxicity by regulating energy metabolism and GAP-43 expression. Metab Brain Dis 29(1):193–205. https://doi.org/10.1007/s11011-014-9490-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei X, Du Z, Zhao L, Feng D, Wei G, He Y, Tan J, Lee WH et al (2009) IFATS collection: the conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells 27(2):478–488. https://doi.org/10.1634/stemcells.2008-0333

    Article  CAS  PubMed  Google Scholar 

  22. Cirillo G, Bianco MR, Colangelo AM, Cavaliere C, Daniele de L, Zaccaro L, Alberghina L, Papa M (2011) Reactive astrocytosis-induced perturbation of synaptic homeostasis is restored by nerve growth factor. Neurobiol Dis 41(3):630–639. https://doi.org/10.1016/j.nbd.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  23. Deng LX, Hu J, Liu N, Wang X, Smith GM, Wen X, Xu XM (2011) GDNF modifies reactive astrogliosis allowing robust axonal regeneration through Schwann cell-seeded guidance channels after spinal cord injury. Exp Neurol 229(2):238–250. https://doi.org/10.1016/j.expneurol.2011.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bongso A, Eng HL, Brenner S, Yeo P (2005) Stem cells From bench to bedside. Stem Cells. Pages 588. https://doi.org/10.1142/5729

  25. Liras A (2010) Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. J Transl Med 8:131. https://doi.org/10.1186/1479-5876-8-131

    Article  PubMed  PubMed Central  Google Scholar 

  26. Makridakis M, Roubelakis MG, Vlahou A (2013) Stem cells: insights into the secretome. Biochim Biophys Acta 1834(11):2380–2384. https://doi.org/10.1016/j.bbapap.2013.01.032

    Article  CAS  PubMed  Google Scholar 

  27. Spees JL, Lee RH, Gregory CA (2016) Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther 7(1):125. https://doi.org/10.1186/s13287-016-0363-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee TH, Yoon JG (2008) Intracerebral transplantation of human adipose tissue stromal cells after middle cerebral artery occlusion in rats. J Clin Neurosci 15(8):907–912. https://doi.org/10.1016/j.jocn.2007.03.016

    Article  PubMed  Google Scholar 

  29. De Miguel MP, Arnalich Montiel F, Lopez Iglesias P, Blazquez Martinez A, Nistal M (2009) Epiblast-derived stem cells in embryonic and adult tissues. Int J Dev Biol 53(8–10):1529–1540. https://doi.org/10.1387/ijdb.072413md

    Article  PubMed  Google Scholar 

  30. Savatier P, Osteil P, Tam PP (2017) Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: slippery slope, terrace and cliff. Stem Cell Res 19:104–112. https://doi.org/10.1016/j.scr.2017.01.008

    Article  PubMed  Google Scholar 

  31. Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5(5):362–369. https://doi.org/10.1080/14653240310003026

    Article  PubMed  Google Scholar 

  32. Paul G, Anisimov SV (2013) The secretome of mesenchymal stem cells: potential implications for neuroregeneration. Biochimie 95(12):2246–2256. https://doi.org/10.1016/j.biochi.2013.07.013

    Article  CAS  PubMed  Google Scholar 

  33. Mitsiadis TA, Barrandon O, Rochat A, Barrandon Y, De Bari C (2007) Stem cell niches in mammals. Exp Cell Res 313(16):3377–3385. https://doi.org/10.1016/j.yexcr.2007.07.027

    Article  CAS  PubMed  Google Scholar 

  34. Maumus M, Jorgensen C, Noel D (2013) Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie 95(12):2229–2234. https://doi.org/10.1016/j.biochi.2013.04.017

    Article  CAS  PubMed  Google Scholar 

  35. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631. https://doi.org/10.1146/annurev.cellbio.21.012704.131525

    Article  CAS  PubMed  Google Scholar 

  36. Caplan AI, Hariri R (2015) Body management: mesenchymal stem cells control the internal regenerator. Stem Cells Transl Med 4(7):695–701. https://doi.org/10.5966/sctm.2014-0291

    Article  PubMed  PubMed Central  Google Scholar 

  37. Marinkovic M, Block TJ, Rakian R, Li Q, Wang E, Reilly MA, Dean DD, Chen XD (2016) One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior. Matrix Biol 52-54:426–441. https://doi.org/10.1016/j.matbio.2016.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bieback K, Kern S, Kluter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22(4):625–634. https://doi.org/10.1634/stemcells.22-4-625

    Article  PubMed  Google Scholar 

  39. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18(2):307–316. https://doi.org/10.1200/JCO.2000.18.2.307

    Article  CAS  PubMed  Google Scholar 

  40. Deus GC, Normanton M, Hamerschlak N, Kondo AT, Ribeiro AA, Goldberg AC, Marti LC (2012) Isolation and characterization of mesenchymal stem cells obtained from reusable and disposable bone marrow collection filters. Einstein (Sao Paulo) 10(3):296–301

    Article  Google Scholar 

  41. Uccelli A, Moretta L, Pistoia V (2006) Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 36(10):2566–2573. https://doi.org/10.1002/eji.200636416

    Article  CAS  PubMed  Google Scholar 

  42. Ma L, Aijima R, Hoshino Y, Yamaza H, Tomoda E, Tanaka Y, Sonoda S, Song G et al (2015) Transplantation of mesenchymal stem cells ameliorates secondary osteoporosis through interleukin-17-impaired functions of recipient bone marrow mesenchymal stem cells in MRL/lpr mice. Stem Cell Res Ther 6:104. https://doi.org/10.1186/s13287-015-0091-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun S, Chen G, Xu M, Qiao Y, Zheng S (2013) Differentiation and migration of bone marrow mesenchymal stem cells transplanted through the spleen in rats with portal hypertension. PLoS One 8(12):e83523. https://doi.org/10.1371/journal.pone.0083523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Aro AA, Carneiro GD, Teodoro LFR, da Veiga FC, Ferrucci DL, Simoes GF, Simoes PW, Alvares LE, et al. (2018) Injured Achilles tendons treated with adipose-derived stem cells transplantation and GDF-5. Cells 7 (9). pii: E127https://doi.org/10.3390/cells7090127

  45. Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V et al (2018) Ethical and safety issues of stem cell-based therapy. Int J Med Sci 15(1):36–45. https://doi.org/10.7150/ijms.21666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yagi H, Kitagawa Y (2013) The role of mesenchymal stem cells in cancer development. Front Genet 4:261. https://doi.org/10.3389/fgene.2013.00261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee HY, Hong IS (2017) Double-edged sword of mesenchymal stem cells: cancer-promoting versus therapeutic potential. Cancer Sci 108(10):1939–1946. https://doi.org/10.1111/cas.13334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ridge SM, Sullivan FJ, Glynn SA (2017) Mesenchymal stem cells: key players in cancer progression. Mol Cancer 16(1):31. https://doi.org/10.1186/s12943-017-0597-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martello G, Smith A (2014) The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30:647–675. https://doi.org/10.1146/annurev-cellbio-100913-013116

    Article  CAS  PubMed  Google Scholar 

  50. Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19(10):1129–1155. https://doi.org/10.1101/gad.1303605

    Article  CAS  PubMed  Google Scholar 

  51. Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186. https://doi.org/10.1038/nprot.2008.92

    Article  CAS  PubMed  Google Scholar 

  52. Mochizuki H, Choong CJ, Yasuda T (2014) The promises of stem cells: stem cell therapy for movement disorders. Parkinsonism Relat Disord 20(Suppl 1):S128–S131. https://doi.org/10.1016/S1353-8020(13)70031-2

    Article  PubMed  Google Scholar 

  53. Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85(2):635–678. https://doi.org/10.1152/physrev.00054.2003

    Article  CAS  PubMed  Google Scholar 

  54. Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N et al (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36(30):2011–2017. https://doi.org/10.1093/eurheartj/ehv189

    Article  PubMed  Google Scholar 

  55. Liu YW, Chen B, Yang X, Fugate JA, Kalucki FA, Futakuchi-Tsuchida A, Couture L, Vogel KW et al (2018) Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol 36(7):597–605. https://doi.org/10.1038/nbt.4162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379(9817):713–720. https://doi.org/10.1016/S0140-6736(12)60028-2

    Article  CAS  PubMed  Google Scholar 

  57. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, Davis JL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385(9967):509–516. https://doi.org/10.1016/S0140-6736(14)61376-3

    Article  PubMed  Google Scholar 

  58. Tani K (2015) Towards the safer clinical translation of human induced pluripotent stem cell-derived cells to regenerative medicine. Mol Ther Methods Clin Dev 2:15032. https://doi.org/10.1038/mtm.2015.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim N, Cho SG (2013) Clinical applications of mesenchymal stem cells. Korean J Intern Med 28(4):387–402. https://doi.org/10.3904/kjim.2013.28.4.387

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rojas M, Meruane M (2012) Potential evolutionary cell and regenerative medicine. Int J Morphol 30(4):1243–1251

    Article  Google Scholar 

  61. Yu KR, Yang SR, Jung JW, Kim H, Ko K, Han DW, Park SB, Choi SW et al (2012) CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells 30(5):876–887. https://doi.org/10.1002/stem.1052

    Article  CAS  PubMed  Google Scholar 

  62. Ali F, Stott SR, Barker RA (2014) Stem cells and the treatment of Parkinson's disease. Exp Neurol 260:3–11. https://doi.org/10.1016/j.expneurol.2012.12.017

    Article  CAS  PubMed  Google Scholar 

  63. Hassan WU, Greiser U, Wang W (2014) Role of adipose-derived stem cells in wound healing. Wound Repair Regen 22(3):313–325. https://doi.org/10.1111/wrr.12173

    Article  PubMed  Google Scholar 

  64. Katsuda T, Kosaka N, Takeshita F, Ochiya T (2013) The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 13(10–11):1637–1653. https://doi.org/10.1002/pmic.201200373

    Article  CAS  PubMed  Google Scholar 

  65. De Feo D, Merlini A, Laterza C, Martino G (2012) Neural stem cell transplantation in central nervous system disorders: from cell replacement to neuroprotection. Curr Opin Neurol 25(3):322–333. https://doi.org/10.1097/WCO.0b013e328352ec45

    Article  CAS  PubMed  Google Scholar 

  66. Brunt KR, Weisel RD, Li RK (2012) Stem cells and regenerative medicine—future perspectives. Can J Physiol Pharmacol 90(3):327–335. https://doi.org/10.1139/y2012-007

    Article  CAS  PubMed  Google Scholar 

  67. Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, Guarnieri P, Bhagat G et al (2012) Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488(7413):652–655. https://doi.org/10.1038/nature11333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Inestrosa NC, Varela-Nallar L (2014) Wnt signaling in the nervous system and in Alzheimer's disease. J Mol Cell Biol 6(1):64–74

    Article  PubMed  Google Scholar 

  69. Forostyak S, Jendelova P, Sykova E (2013) The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie 95(12):2257–2270. https://doi.org/10.1016/j.biochi.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  70. Srinageshwar B, Maiti P, Dunbar GL, Rossignol J (2016) Role of epigenetics in stem cell proliferation and differentiation: implications for treating neurodegenerative diseases. Int J Mol Sci 17 (2). pii: E199 https://doi.org/10.3390/ijms17020199

  71. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A et al (2009) Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977. https://doi.org/10.1016/j.cell.2009.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107(9):4335–4340. https://doi.org/10.1073/pnas.0910012107

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nori S, Okada Y, Yasuda A, Tsuji O, Takahashi Y, Kobayashi Y, Fujiyoshi K, Koike M et al (2011) Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A 108(40):16825–16830. https://doi.org/10.1073/pnas.1108077108

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mariani J, Simonini MV, Palejev D, Tomasini L, Coppola G, Szekely AM, Horvath TL, Vaccarino FM (2012) Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci U S A 109(31):12770–12775. https://doi.org/10.1073/pnas.1202944109

    Article  PubMed  PubMed Central  Google Scholar 

  75. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143(4):527–539. https://doi.org/10.1016/j.cell.2010.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kassem M (2004) Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells 6(4):369–374. https://doi.org/10.1089/clo.2004.6.369

    Article  CAS  PubMed  Google Scholar 

  77. Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 25(4):818–827. https://doi.org/10.1634/stemcells.2006-0589

    Article  CAS  PubMed  Google Scholar 

  78. Guadix JA, Zugaza JL, Galvez-Martin P (2017) Characteristics, applications and prospects of mesenchymal stem cells in cell therapy. Med Clin (Barc) 148(9):408–414. https://doi.org/10.1016/j.medcli.2016.11.033

    Article  Google Scholar 

  79. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–109. https://doi.org/10.1159/000071150

    Article  PubMed  Google Scholar 

  80. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301. https://doi.org/10.1634/stemcells.2005-0342

    Article  CAS  PubMed  Google Scholar 

  81. Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, Wu CH, Lin WY et al (2013) Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One 8(8):e72604. https://doi.org/10.1371/journal.pone.0072604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ribeiro CA, Fraga JS, Graos M, Neves NM, Reis RL, Gimble JM, Sousa N, Salgado AJ (2012) The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res Ther 3(3):18. https://doi.org/10.1186/scrt109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vessey CJ, de la Hall PM (2001) Hepatic stem cells: a review. Pathology 33(2):130–141

    Article  CAS  PubMed  Google Scholar 

  84. Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132(4):583–597. https://doi.org/10.1016/j.cell.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  85. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118(5):635–648. https://doi.org/10.1016/j.cell.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  86. Christiano AM (2004) Epithelial stem cells: stepping out of their niche. Cell 118(5):530–532. https://doi.org/10.1016/j.cell.2004.08.024

    Article  CAS  PubMed  Google Scholar 

  87. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778

    Article  CAS  PubMed  Google Scholar 

  88. Behrstock, Soshana, and Svendsen, Clive(Jan 2006) Neural Stem Cells. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1038/npg.els.0005765]

  89. Herberts CA, Kwa MS, Hermsen HP (2011) Risk factors in the development of stem cell therapy. J Transl Med 9:29. https://doi.org/10.1186/1479-5876-9-29

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749. https://doi.org/10.1634/stemcells.2007-0197

    Article  CAS  PubMed  Google Scholar 

  91. Rigotti G, Marchi A, Sbarbati A (2009) Adipose-derived mesenchymal stem cells: past, present, and future. Aesthet Plast Surg 33(3):271–273. https://doi.org/10.1007/s00266-009-9339-7

    Article  Google Scholar 

  92. Locke M, Windsor J, Dunbar PR (2009) Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg 79(4):235–244. https://doi.org/10.1111/j.1445-2197.2009.04852.x

    Article  PubMed  Google Scholar 

  93. Sadat S, Gehmert S, Song Y-H, Yen Y, Bai X, Gaiser S, Klein H, Alt E (2007) The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun 363(3):674–679

    Article  CAS  PubMed  Google Scholar 

  94. Lim JS, Yoo G (2010) Effects of adipose-derived stromal cells and of their extract on wound healing in a mouse model. J Korean Med Sci 25(5):746–751

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54(5):1418–1437

    Article  CAS  PubMed  Google Scholar 

  96. Lavoie JR, Rosu-Myles M (2013) Uncovering the secrets of mesenchymal stem cells. Biochimie 95(12):2212–2221. https://doi.org/10.1016/j.biochi.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  97. Silva NA, Gimble JM, Sousa N, Reis RL, Salgado AJ (2013) Combining adult stem cells and olfactory ensheathing cells: the secretome effect. Stem Cells Dev 22(8):1232–1240. https://doi.org/10.1089/scd.2012.0524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23(5):812–823. https://doi.org/10.1038/mt.2015.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang Z, Wang Y, Gutkind JS, Wang F, Lu J, Niu G, Teng G, Chen X (2015) Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury. Stem Cells 33(2):456–467. https://doi.org/10.1002/stem.1878

    Article  CAS  PubMed  Google Scholar 

  100. Rani S, Ritter T (2016) The exosome—a naturally secreted nanoparticle and its application to wound healing. Adv Mater 28(27):5542–5552. https://doi.org/10.1002/adma.201504009

    Article  CAS  PubMed  Google Scholar 

  101. Wu L, Wang T, Ge Y, Cai X, Wang J, Lin Y (2012) Secreted factors from adipose tissue increase adipogenic differentiation of mesenchymal stem cells. Cell Prolif 45(4):311–319. https://doi.org/10.1111/j.1365-2184.2012.00823.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shabbir A, Zisa D, Suzuki G, Lee T (2009) Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol 296(6):H1888–H1897. https://doi.org/10.1152/ajpheart.00186.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Caccia D, Dugo M, Callari M, Bongarzone I (2013) Bioinformatics tools for secretome analysis. Biochim Biophys Acta 1834(11):2442–2453. https://doi.org/10.1016/j.bbapap.2013.01.039

    Article  CAS  PubMed  Google Scholar 

  104. Madrigal M, Rao KS, Riordan NH (2014) A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med 12:260. https://doi.org/10.1186/s12967-014-0260-8

    Article  PubMed  PubMed Central  Google Scholar 

  105. Golchin A, Hosseinzadeh S, Ardeshirylajimi A (2018) The exosomes released from different cell types and their effects in wound healing. J Cell Biochem 119(7):5043–5052. https://doi.org/10.1002/jcb.26706

    Article  CAS  PubMed  Google Scholar 

  106. Wu P, Zhang B, Shi H, Qian H, Xu W (2018) MSC-exosome: a novel cell-free therapy for cutaneous regeneration. Cytotherapy 20(3):291–301. https://doi.org/10.1016/j.jcyt.2017.11.002

    Article  PubMed  Google Scholar 

  107. Lunyak VV, Amaro-Ortiz A, Gaur M (2017) Mesenchymal stem cells secretory responses: senescence messaging secretome and immunomodulation perspective. Front Genet 8:220. https://doi.org/10.3389/fgene.2017.00220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Seo M, Kim JC, Kim HK, Choi EW, Jeong S, Nam KC, Jang M (2018) A novel secretory vesicle from deer antlerogenic mesenchymal stem cell-conditioned media (DaMSC-CM) promotes tissue regeneration. Stem Cells Int 2018:3891404. https://doi.org/10.1155/2018/3891404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xitong D, Xiaorong Z (2016) Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases. Gene 575(2 Pt 2):377–384. https://doi.org/10.1016/j.gene.2015.08.067

    Article  CAS  PubMed  Google Scholar 

  110. Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. https://doi.org/10.3402/jev.v4.27066

    Article  PubMed  Google Scholar 

  111. Castro-Manrreza ME, Montesinos JJ (2015) Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res 2015:394917. https://doi.org/10.1155/2015/394917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cao W, Cao K, Cao J, Wang Y, Shi Y (2015) Mesenchymal stem cells and adaptive immune responses. Immunol Lett 168(2):147–153. https://doi.org/10.1016/j.imlet.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  113. Burrello J, Monticone S, Gai C, Gomez Y, Kholia S, Camussi G (2016) Stem cell-derived extracellular vesicles and immune-modulation. Front Cell Dev Biol 4:83. https://doi.org/10.3389/fcell.2016.00083

    Article  PubMed  PubMed Central  Google Scholar 

  114. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476. https://doi.org/10.1038/ncb1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21. https://doi.org/10.1016/j.ygyno.2008.04.033

    Article  CAS  PubMed  Google Scholar 

  116. Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S (2008) MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 14(9):2690–2695. https://doi.org/10.1158/1078-0432.CCR-07-1731

    Article  CAS  PubMed  Google Scholar 

  117. Lai RC, Yeo RW, Lim SK (2015) Mesenchymal stem cell exosomes. Semin Cell Dev Biol 40:82–88. https://doi.org/10.1016/j.semcdb.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  118. Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y et al (2015) Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 589(11):1257–1265. https://doi.org/10.1016/j.febslet.2015.03.031

    Article  CAS  PubMed  Google Scholar 

  119. Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA, Mardani K (2012) Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett 147(1–2):47–54. https://doi.org/10.1016/j.imlet.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  120. Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, Shi H, Wu L et al (2015) HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 33(7):2158–2168. https://doi.org/10.1002/stem.1771

    Article  CAS  PubMed  Google Scholar 

  121. Wu S, Ju GQ, Du T, Zhu YJ, Liu GH (2013) Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One 8(4):e61366. https://doi.org/10.1371/journal.pone.0061366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y et al (2013) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22(6):845–854. https://doi.org/10.1089/scd.2012.0395

    Article  CAS  PubMed  Google Scholar 

  123. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222. https://doi.org/10.1016/j.scr.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  124. Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, Qu JM, Matthay MA et al (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32(1):116–125. https://doi.org/10.1002/stem.1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Arsenijevic N, Volarevic V (2018) Therapeutic potential of mesenchymal stem cell-derived exosomes in the treatment of eye diseases. Adv Exp Med Biol. https://doi.org/10.1007/5584_2018_219

  126. Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15(3):4142–4157. https://doi.org/10.3390/ijms15034142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, Xiong Y (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg 122(4):856–867. https://doi.org/10.3171/2014.11.JNS14770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Koniusz S, Andrzejewska A, Muraca M, Srivastava AK, Janowski M, Lukomska B (2016) Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front Cell Neurosci 10:109. https://doi.org/10.3389/fncel.2016.00109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nakano M, Nagaishi K, Konari N, Saito Y, Chikenji T, Mizue Y, Fujimiya M (2016) Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Sci Rep 6:24805. https://doi.org/10.1038/srep24805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lankford KL, Arroyo EJ, Nazimek K, Bryniarski K, Askenase PW, Kocsis JD (2018) Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS One 13(1):e0190358. https://doi.org/10.1371/journal.pone.0190358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, Zhang ZG, Chopp M (2017) Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant 26(2):243–257. https://doi.org/10.3727/096368916X693031

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lafourcade C, Ramirez JP, Luarte A, Fernandez A, Wyneken U (2016) MiRNAs in astrocyte-derived exosomes as possible mediators of neuronal plasticity. J Exp Neurosci 10(Suppl 1):1–9. https://doi.org/10.4137/JEN.S39916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Farinazzo A, Angiari S, Turano E, Bistaffa E, Dusi S, Ruggieri S, Bonafede R, Mariotti R et al (2018) Nanovesicles from adipose-derived mesenchymal stem cells inhibit T lymphocyte trafficking and ameliorate chronic experimental autoimmune encephalomyelitis. Sci Rep 8(1):7473. https://doi.org/10.1038/s41598-018-25676-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Han Y, Seyfried D, Meng Y, Yang D, Schultz L, Chopp M (2018) Multipotent mesenchymal stromal cell-derived exosomes improve functional recovery after experimental intracerebral hemorrhage in the rat. J Neurosurg 1–11. doi:https://doi.org/10.3171/2018.2.JNS171475

  135. Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, Ali M, Mahmood A et al (2017) Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int 111:69–81. https://doi.org/10.1016/j.neuint.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  136. Duan X, Lu L, Wang Y, Zhang F, Mao J, Cao M, Lin B, Zhang X et al (2017) The long-term fate of mesenchymal stem cells labeled with magnetic resonance imaging-visible polymersomes in cerebral ischemia. Int J Nanomedicine 12:6705–6719. https://doi.org/10.2147/IJN.S146742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chiellini C, Cochet O, Negroni L, Samson M, Poggi M, Ailhaud G, Alessi MC, Dani C et al (2008) Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation. BMC Mol Biol 9:26. https://doi.org/10.1186/1471-2199-9-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. DeLany JP, Floyd ZE, Zvonic S, Smith A, Gravois A, Reiners E, Wu X, Kilroy G et al (2005) Proteomic analysis of primary cultures of human adipose-derived stem cells: modulation by adipogenesis. Mol Cell Proteomics 4(6):731–740. https://doi.org/10.1074/mcp.M400198-MCP200

    Article  CAS  PubMed  Google Scholar 

  139. Lo Furno D, Mannino G, Giuffrida R (2018) Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol 233(5):3982–3999. https://doi.org/10.1002/jcp.26192

    Article  CAS  PubMed  Google Scholar 

  140. De la Rosa MB, Kozik EM, Sakaguchi DS (2018) Adult stem cell-based strategies for peripheral nerve regeneration. Adv Exp Med Biol. https://doi.org/10.1007/5584_2018_254

  141. Kim DH, Lee D, Lim H, Choi SJ, Oh W, Yang YS, Chang JH, Jeon HB (2018) Effect of growth differentiation factor-15 secreted by human umbilical cord blood-derived mesenchymal stem cells on amyloid beta levels in in vitro and in vivo models of Alzheimer's disease. Biochem Biophys Res Commun 504(4):933–940. https://doi.org/10.1016/j.bbrc.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  142. Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5(6):933–946. https://doi.org/10.2217/rme.10.72

    Article  PubMed  Google Scholar 

  143. Barile L, Vassalli G (2017) Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther 174:63–78. https://doi.org/10.1016/j.pharmthera.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  144. Gnecchi M, Danieli P, Cervio E (2012) Mesenchymal stem cell therapy for heart disease. Vasc Pharmacol 57(1):48–55. https://doi.org/10.1016/j.vph.2012.04.002

    Article  CAS  Google Scholar 

  145. Bartolucci J, Verdugo FJ, Gonzalez PL, Larrea RE, Abarzua E, Goset C, Rojo P, Palma I et al (2017) Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circ Res 121(10):1192–1204. https://doi.org/10.1161/CIRCRESAHA.117.310712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kemp K, Hares K, Mallam E, Heesom KJ, Scolding N, Wilkins A (2010) Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J Neurochem 114(6):1569–1580. https://doi.org/10.1111/j.1471-4159.2009.06553.x

    Article  CAS  PubMed  Google Scholar 

  147. Um S, Kim HY, Lee JH, Song IS, Seo BM (2017) TSG-6 secreted by mesenchymal stem cells suppresses immune reactions influenced by BMP-2 through p38 and MEK mitogen-activated protein kinase pathway. Cell Tissue Res 368(3):551–561. https://doi.org/10.1007/s00441-017-2581-4

    Article  CAS  PubMed  Google Scholar 

  148. Day AJ, Milner CM (2018) TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biol. https://doi.org/10.1016/j.matbio.2018.01.011

  149. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV et al (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312. https://doi.org/10.1016/j.scr.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  150. Uccelli A, Pistoia V, Moretta L (2007) Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 28(5):219–226. https://doi.org/10.1016/j.it.2007.03.001

    Article  CAS  PubMed  Google Scholar 

  151. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20(5):1053–1067. https://doi.org/10.1681/ASN.2008070798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, Sordi A, Biancone L et al (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82(4):412–427. https://doi.org/10.1038/ki.2012.105

    Article  CAS  PubMed  Google Scholar 

  153. Lai WH, Ho JC, Chan YC, Ng JH, Au KW, Wong LY, Siu CW, Tse HF (2013) Attenuation of hind-limb ischemia in mice with endothelial-like cells derived from different sources of human stem cells. PLoS One 8(3):e57876. https://doi.org/10.1371/journal.pone.0057876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jackson WM, Nesti LJ, Tuan RS (2012) Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther 3(3):20. https://doi.org/10.1186/scrt111

    Article  PubMed  PubMed Central  Google Scholar 

  155. Li M, Luan F, Zhao Y, Hao H, Liu J, Dong L, Fu X, Han W (2017) Mesenchymal stem cell-conditioned medium accelerates wound healing with fewer scars. Int Wound J 14(1):64–73. https://doi.org/10.1111/iwj.12551

    Article  PubMed  Google Scholar 

  156. Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M (2012) Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A 18(13–14):1479–1489. https://doi.org/10.1089/ten.TEA.2011.0325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Park EH, Lim HS, Lee S, Roh K, Seo KW, Kang KS, Shin K (2018) Intravenous infusion of umbilical cord blood-derived mesenchymal stem cells in rheumatoid arthritis: a phase Ia clinical trial. Stem Cells Transl Med 7(9):636–642. https://doi.org/10.1002/sctm.18-0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Maumus M, Manferdini C, Toupet K, Peyrafitte JA, Ferreira R, Facchini A, Gabusi E, Bourin P et al (2013) Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Res 11(2):834–844. https://doi.org/10.1016/j.scr.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  159. Kota DJ, Wiggins LL, Yoon N, Lee RH (2013) TSG-6 produced by hMSCs delays the onset of autoimmune diabetes by suppressing Th1 development and enhancing tolerogenicity. Diabetes 62(6):2048–2058. https://doi.org/10.2337/db12-0931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kim HS, Lee JH, Roh KH, Jun HJ, Kang KS, Kim TY (2017) Clinical trial of human umbilical cord blood-derived stem cells for the treatment of moderate-to-severe atopic dermatitis: phase I/IIa studies. Stem Cells 35(1):248–255. https://doi.org/10.1002/stem.2401

    Article  CAS  PubMed  Google Scholar 

  161. da Silva AF, Silva K, Reis LA, Teixeira VP, Schor N (2015) Bone marrow-derived mesenchymal stem cells and their conditioned medium attenuate fibrosis in an irreversible model of unilateral ureteral obstruction. Cell Transplant 24(12):2657–2666. https://doi.org/10.3727/096368915X687534

    Article  PubMed  Google Scholar 

  162. Shen C, Lie P, Miao T, Yu M, Lu Q, Feng T, Li J, Zu T et al (2015) Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Mol Med Rep 12(1):20–30. https://doi.org/10.3892/mmr.2015.3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kawai T, Katagiri W, Osugi M, Sugimura Y, Hibi H, Ueda M (2015) Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration. Cytotherapy 17(4):369–381. https://doi.org/10.1016/j.jcyt.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  164. Chuang TJ, Lin KC, Chio CC, Wang CC, Chang CP, Kuo JR (2012) Effects of secretome obtained from normoxia-preconditioned human mesenchymal stem cells in traumatic brain injury rats. J Trauma Acute Care Surg 73(5):1161–1167. https://doi.org/10.1097/TA.0b013e318265d128

    Article  CAS  PubMed  Google Scholar 

  165. Shiue SJ, Rau RH, Shiue HS, Hung YW, Li ZX, Yang KD, Cheng JK (2019) Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury-induced pain in rats. Pain 160(1):210–223. https://doi.org/10.1097/j.pain.0000000000001395

    Article  CAS  PubMed  Google Scholar 

  166. Gama KB, Santos DS, Evangelista AF, Silva DN, de Alcantara AC, Dos Santos RR, Soares MBP, Villarreal CF (2018) Conditioned medium of bone marrow-derived mesenchymal stromal cells as a therapeutic approach to neuropathic pain: a preclinical evaluation. Stem Cells Int 2018:8179013. https://doi.org/10.1155/2018/8179013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chang CP, Chio CC, Cheong CU, Chao CM, Cheng BC, Lin MT (2013) Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond) 124(3):165–176. https://doi.org/10.1042/CS20120226

    Article  CAS  Google Scholar 

  168. Mesentier-Louro LA, Zaverucha-do-Valle C, da Silva-Junior AJ, Nascimento-Dos-Santos G, Gubert F, de Figueiredo AB, Torres AL, Paredes BD et al (2014) Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS One 9(10):e110722. https://doi.org/10.1371/journal.pone.0110722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Papazian I, Kyrargyri V, Evangelidou M, Voulgari-Kokota A, Probert L (2018) Mesenchymal stem cell protection of neurons against glutamate excitotoxicity involves reduction of NMDA-triggered calcium responses and surface GluR1, and is partly mediated by TNF. Int J Mol Sci 19(3). pii: E651https://doi.org/10.3390/ijms19030651

  170. Wang F, Yasuhara T, Shingo T, Kameda M, Tajiri N, Yuan WJ, Kondo A, Kadota T et al (2010) Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: focusing on neuroprotective effects of stromal cell-derived factor-1alpha. BMC Neurosci 11:52. https://doi.org/10.1186/1471-2202-11-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dahbour S, Jamali F, Alhattab D, Al-Radaideh A, Ababneh O, Al-Ryalat N, Al-Bdour M, Hourani B et al (2017) Mesenchymal stem cells and conditioned media in the treatment of multiple sclerosis patients: clinical, ophthalmological and radiological assessments of safety and efficacy. CNS Neurosci Ther 23(11):866–874. https://doi.org/10.1111/cns.12759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N (2009) Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res 3(1):63–70. https://doi.org/10.1016/j.scr.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  173. Martins LF, Costa RO, Pedro JR, Aguiar P, Serra SC, Teixeira FG, Sousa N, Salgado AJ et al (2017) Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF. Sci Rep 7(1):4153. https://doi.org/10.1038/s41598-017-03592-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Brick RM, Sun AX, Tuan RS (2018) Neurotrophically induced mesenchymal progenitor cells derived from induced pluripotent stem cells enhance neuritogenesis via neurotrophin and cytokine production. Stem Cells Transl Med 7(1):45–58. https://doi.org/10.1002/sctm.17-0108

    Article  CAS  PubMed  Google Scholar 

  175. Tsai M-J, Tsai S-K, Hu B-R, Liou D-Y, Huang S-L, Huang M-C, Huang W-C, Cheng H et al (2014) Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J Biomed Sci 21(1):5. https://doi.org/10.1186/1423-0127-21-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mukai T, Tojo A, Nagamura-Inoue T (2018) Umbilical cord-derived mesenchymal stromal cells contribute to neuroprotection in neonatal cortical neurons damaged by oxygen-glucose deprivation. Front Neurol 9:466. https://doi.org/10.3389/fneur.2018.00466

    Article  PubMed  PubMed Central  Google Scholar 

  177. Liang CM, Weng SJ, Tsai TH, Li IH, Lu PH, Ma KH, Tai MC, Chen JT et al (2014) Neurotrophic and neuroprotective potential of human limbus-derived mesenchymal stromal cells. Cytotherapy 16(10):1371–1383. https://doi.org/10.1016/j.jcyt.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  178. Ahn SY, Chang YS, Sung DK, Sung SI, Ahn JY, Park WS (2017) Pivotal role of brain-derived neurotrophic factor secreted by mesenchymal stem cells in severe intraventricular hemorrhage in newborn rats. Cell Transplant 26(1):145–156. https://doi.org/10.3727/096368916X692861

    Article  PubMed  PubMed Central  Google Scholar 

  179. Zemel'ko VI, Kozhukharova IB, Alekseenko LL, Domnina AP, Reshetnikova GF, Puzanov MV, Dmitrieva RI, Grinchuk TM et al (2013) [Neurogenic potential of human mesenchymal stem cells isolated from bone marrow, adipose tissue and endometrium: a comparative study]. Tsitologiia 55(2):101–110

    CAS  PubMed  Google Scholar 

  180. Mukai T, Mori Y, Shimazu T, Takahashi A, Tsunoda H, Yamaguchi S, Kiryu S, Tojo A et al (2017) Intravenous injection of umbilical cord-derived mesenchymal stromal cells attenuates reactive gliosis and hypomyelination in a neonatal intraventricular hemorrhage model. Neuroscience 355:175–187. https://doi.org/10.1016/j.neuroscience.2017.05.006

    Article  CAS  PubMed  Google Scholar 

  181. Scheibe F, Klein O, Klose J, Priller J (2012) Mesenchymal stromal cells rescue cortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia. Cell Mol Neurobiol 32(4):567–576. https://doi.org/10.1007/s10571-012-9798-2

    Article  CAS  PubMed  Google Scholar 

  182. McKee AC, Daneshvar DH (2015) The neuropathology of traumatic brain injury. Handb Clin Neurol 127:45–66. https://doi.org/10.1016/B978-0-444-52892-6.00004-0

    Article  PubMed  PubMed Central  Google Scholar 

  183. Ling H, Hardy J, Zetterberg H (2015) Neurological consequences of traumatic brain injuries in sports. Mol Cell Neurosci 66(Pt B):114–122. https://doi.org/10.1016/j.mcn.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  184. Prins M, Greco T, Alexander D, Giza CC (2013) The pathophysiology of traumatic brain injury at a glance. Dis Model Mech 6(6):1307–1315. https://doi.org/10.1242/dmm.011585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Quijano MC, Cuervo MT, Aponte M, Arango JC (2012) Neuropsicología del trauma craneoencefálico en Cali. Colombia 10(1):11

    Google Scholar 

  186. Albert-Weissenberger C, Siren AL, Kleinschnitz C (2013) Ischemic stroke and traumatic brain injury: the role of the kallikrein-kinin system. Prog Neurobiol 101-102:65–82. https://doi.org/10.1016/j.pneurobio.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  187. Oliva AA Jr, Kang Y, Sanchez-Molano J, Furones C, Atkins CM (2012) STAT3 signaling after traumatic brain injury. J Neurochem 120(5):710–720. https://doi.org/10.1111/j.1471-4159.2011.07610.x

    Article  CAS  PubMed  Google Scholar 

  188. Hinzman JM, Thomas TC, Quintero JE, Gerhardt GA, Lifshitz J (2012) Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J Neurotrauma 29(6):1197–1208. https://doi.org/10.1089/neu.2011.2261

    Article  PubMed  PubMed Central  Google Scholar 

  189. Cao T, Thomas TC, Ziebell JM, Pauly JR, Lifshitz J (2012) Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience 225:65–75. https://doi.org/10.1016/j.neuroscience.2012.08.058

    Article  CAS  PubMed  Google Scholar 

  190. Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23(2):137–149. https://doi.org/10.1097/01.WCB.0000044631.80210.3C

    Article  PubMed  Google Scholar 

  191. Barreto GE, Gonzalez J, Torres Y, Morales L (2011) Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 71(2):107–113. https://doi.org/10.1016/j.neures.2011.06.004

    Article  PubMed  Google Scholar 

  192. Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, Chen Y, Su H et al (2010) Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol 67(4):488–497. https://doi.org/10.1002/ana.21919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wei H, Mao Q, Liu L, Xu Y, Chen J, Jiang R, Yin L, Fan Y et al (2011) Changes and function of circulating endothelial progenitor cells in patients with cerebral aneurysm. J Neurosci Res 89(11):1822–1828. https://doi.org/10.1002/jnr.22696

    Article  CAS  PubMed  Google Scholar 

  194. Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS (2009) Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 110(6):1189–1197. https://doi.org/10.3171/2008.9.JNS08158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gao J, Prough DS, McAdoo DJ, Grady JJ, Parsley MO, Ma L, Tarensenko YI, Wu P (2006) Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp Neurol 201(2):281–292. https://doi.org/10.1016/j.expneurol.2006.04.039

    Article  CAS  PubMed  Google Scholar 

  196. Thonhoff JR, Lou DI, Jordan PM, Zhao X, Wu P (2008) Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 1187:42–51. https://doi.org/10.1016/j.brainres.2007.10.046

    Article  CAS  PubMed  Google Scholar 

  197. Otsuka T, Imura T, Nakagawa K, Shrestha L, Takahashi S, Kawahara Y, Sueda T, Kurisu K et al (2018) Simulated microgravity culture enhances the neuroprotective effects of human cranial bone-derived mesenchymal stem cells in traumatic brain injury. Stem Cells Dev 27(18):1287–1297. https://doi.org/10.1089/scd.2017.0299

    Article  CAS  PubMed  Google Scholar 

  198. Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells—current trends and future prospective. Biosci Rep 35(2):1–18. https://doi.org/10.1042/BSR20150025

    Article  CAS  Google Scholar 

  199. Cohen SP, Mao J (2014) Neuropathic pain: mechanisms and their clinical implications. BMJ 348:f7656. https://doi.org/10.1136/bmj.f7656

    Article  PubMed  Google Scholar 

  200. de Pedro-Cuesta J, Rabano A, Martinez-Martin P, Ruiz-Tovar M, Alcalde-Cabero E, Almazan-Isla J, Avellanal F, Calero M (2015) Comparative incidence of conformational, neurodegenerative disorders. PLoS One 10(9):e0137342. https://doi.org/10.1371/journal.pone.0137342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Cannon JR, Greenamyre JT (2011) The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 124(2):225–250. https://doi.org/10.1093/toxsci/kfr239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Olson SD, Pollock K, Kambal A, Cary W, Mitchell GM, Tempkin J, Stewart H, McGee J et al (2012) Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington's disease. Mol Neurobiol 45(1):87–98. https://doi.org/10.1007/s12035-011-8219-8

    Article  CAS  PubMed  Google Scholar 

  203. Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S (2013) The stem cell secretome and its role in brain repair. Biochimie 95(12):2271–2285. https://doi.org/10.1016/j.biochi.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kim EK, Lim S, Park JM, Seo JK, Kim JH, Kim KT, Ryu SH, Suh PG (2012) Human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by AMP-activated protein kinase. J Cell Physiol 227(4):1680–1687. https://doi.org/10.1002/jcp.22892

    Article  CAS  PubMed  Google Scholar 

  205. Burke RE, O'Malley K (2013) Axon degeneration in Parkinson's disease. Exp Neurol 246:72–83. https://doi.org/10.1016/j.expneurol.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  206. Tagliaferro P, Burke RE (2016) Retrograde axonal degeneration in Parkinson disease. J Park Dis 6(1):1–15. https://doi.org/10.3233/JPD-150769

    Article  Google Scholar 

  207. Whone AL, Kemp K, Sun M, Wilkins A, Scolding NJ (2012) Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res 1431:86–96. https://doi.org/10.1016/j.brainres.2011.10.038

    Article  CAS  PubMed  Google Scholar 

  208. Hoban DB, Howard L, Dowd E (2015) GDNF-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson's disease. Neuroscience 303:402–411. https://doi.org/10.1016/j.neuroscience.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  209. Datta I, Bhonde R (2012) Can mesenchymal stem cells reduce vulnerability of dopaminergic neurons in the substantia nigra to oxidative insult in individuals at risk to Parkinson's disease? Cell Biol Int 36(7):617–624. https://doi.org/10.1042/CBI20110602

    Article  CAS  PubMed  Google Scholar 

  210. Cruz-Martinez P, Gonzalez-Granero S, Molina-Navarro MM, Pacheco-Torres J, Garcia-Verdugo JM, Geijo-Barrientos E, Jones J, Martinez S (2016) Intraventricular injections of mesenchymal stem cells activate endogenous functional remyelination in a chronic demyelinating murine model. Cell Death Dis 7:e2223. https://doi.org/10.1038/cddis.2016.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Petrou P, Gothelf Y, Argov Z, Gotkine M, Levy YS, Kassis I, Vaknin-Dembinsky A, Ben-Hur T et al (2016) Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol 73(3):337–344. https://doi.org/10.1001/jamaneurol.2015.4321

    Article  PubMed  Google Scholar 

  212. Kim HY, Kim H, Oh KW, Oh SI, Koh SH, Baik W, Noh MY, Kim KS et al (2014) Biological markers of mesenchymal stromal cells as predictors of response to autologous stem cell transplantation in patients with amyotrophic lateral sclerosis: an investigator-initiated trial and in vivo study. Stem Cells 32(10):2724–2731. https://doi.org/10.1002/stem.1770

    Article  CAS  PubMed  Google Scholar 

  213. Mayeux R, Stern Y (2012) Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2(8). pii: a006239https://doi.org/10.1101/cshperspect.a006239

  214. Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11(2):111–128

    PubMed  PubMed Central  Google Scholar 

  215. Kim DH, Lee D, Chang EH, Kim JH, Hwang JW, Kim JY, Kyung JW, Kim SH et al (2015) GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer's disease model. Stem Cells Dev 24(20):2378–2390. https://doi.org/10.1089/scd.2014.0487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kim JY, Kim DH, Kim JH, Lee D, Jeon HB, Kwon SJ, Kim SM, Yoo YJ et al (2012) Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques. Cell Death Differ 19(4):680–691. https://doi.org/10.1038/cdd.2011.140

    Article  CAS  PubMed  Google Scholar 

  217. Kim HJ, Seo SW, Chang JW, Lee JI, Kim CH, Chin J, Choi SJ, Kwon H et al (2015) Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer's disease dementia: a phase 1 clinical trial. Alzheimers Dement (N Y) 1(2):95–102. https://doi.org/10.1016/j.trci.2015.06.007

    Article  Google Scholar 

  218. Moraes L, Vasconcelos-dos-Santos A, Santana FC, Godoy MA, Rosado-de-Castro PH, Jasmin A-PRL, Cintra WM, Gasparetto EL et al (2012) Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington's disease. Stem Cell Res 9(2):143–155. https://doi.org/10.1016/j.scr.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  219. Nakano N, Nakai Y, Seo TB, Yamada Y, Ohno T, Yamanaka A, Nagai Y, Fukushima M et al (2010) Characterization of conditioned medium of cultured bone marrow stromal cells. Neurosci Lett 483(1):57–61. https://doi.org/10.1016/j.neulet.2010.07.062

    Article  CAS  PubMed  Google Scholar 

  220. Assuncao-Silva RC, Mendes-Pinheiro B, Patricio P, Behie LA, Teixeira FG, Pinto L, Salgado AJ (2018) Exploiting the impact of the secretome of MSCs isolated from different tissue sources on neuronal differentiation and axonal growth. Biochimie. 155:83–91. https://doi.org/10.1016/j.biochi.2018.07.026

    Article  CAS  PubMed  Google Scholar 

  221. Cizkova D, Cubinkova V, Smolek T, Murgoci AN, Danko J, Vdoviakova K, Humenik F, Cizek M, et al. (2018) Localized intrathecal delivery of mesenchymal stromal cells conditioned medium improves functional recovery in a rat model of spinal cord injury. Int J Mol Sci 19(3). pii: E870https://doi.org/10.3390/ijms19030870

  222. Caron I, Rossi F, Papa S, Aloe R, Sculco M, Mauri E, Sacchetti A, Erba E et al (2016) A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials 75:135–147. https://doi.org/10.1016/j.biomaterials.2015.10.024

    Article  CAS  PubMed  Google Scholar 

  223. Endres M, Dirnagl U (2003) Ischemia and stroke. In: Molecular and cellular biology of neuroprotection in the CNS. Editors: Alzheimer, Christian (Ed.). Advances in Experimental Medicine and Biology, Springer, pp 455–473. 

  224. Neymotin SA, Taxin Z, Mohan A, Lipton P (2015) Brain ischemia and stroke. Encyclopedia of Computational Neuroscience 437–441

  225. Kokai LE, Marra K, Rubin JP (2014) Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res 163(4):399–408. https://doi.org/10.1016/j.trsl.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  226. Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y et al (2011) Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 6(3):e17899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Hiwatashi N, Hirano S, Mizuta M, Tateya I, Kanemaru S, Nakamura T, Ito J (2014) Adipose-derived stem cells versus bone marrow-derived stem cells for vocal fold regeneration. Laryngoscope 124(12):E461–E469. https://doi.org/10.1002/lary.24816

    Article  CAS  PubMed  Google Scholar 

  228. Kim WS, Park BS, Kim HK, Park JS, Kim KJ, Choi JS, Chung SJ, Kim DD et al (2008) Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci 49(2):133–142. https://doi.org/10.1016/j.jdermsci.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  229. Zhou BR, Xu Y, Guo SL, Wang Y, Zhu F, Permatasari F, Wu D, Yin ZQ et al (2013) The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. Biomed Res Int 2013:519126. https://doi.org/10.1155/2013/519126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kim WS, Park BS, Park SH, Kim HK, Sung JH (2009) Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors. J Dermatol Sci 53(2):96–102. https://doi.org/10.1016/j.jdermsci.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  231. Hong SJ, Traktuev DO, March KL (2010) Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant 15(1):86–91. https://doi.org/10.1097/MOT.0b013e328334f074

    Article  PubMed  Google Scholar 

  232. Dong L, Hao H, Liu J, Ti D, Tong C, Hou Q, Li M, Zheng J et al (2017) A conditioned medium of umbilical cord mesenchymal stem cells overexpressing Wnt7a promotes wound repair and regeneration of hair follicles in mice. Stem Cells Int 2017:3738071. https://doi.org/10.1155/2017/3738071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Heo SJ, Thorpe SD, Driscoll TP, Duncan RL, Lee DA, Mauck RL (2015) Biophysical regulation of chromatin architecture instills a mechanical memory in mesenchymal stem cells. Sci Rep 5:16895. https://doi.org/10.1038/srep16895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Sugitani S, Tsuruma K, Ohno Y, Kuse Y, Yamauchi M, Egashira Y, Yoshimura S, Shimazawa M et al (2013) The potential neuroprotective effect of human adipose stem cells conditioned medium against light-induced retinal damage. Exp Eye Res 116:254–264. https://doi.org/10.1016/j.exer.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  235. Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J (2011) Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant 20(2):205–216. https://doi.org/10.3727/096368910X520065

    Article  PubMed  Google Scholar 

  236. Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, Takeshita F, Sakai Y et al (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197. https://doi.org/10.1038/srep01197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Oses C, Olivares B, Ezquer M, Acosta C, Bosch P, Donoso M, Leniz P, Ezquer F (2017) Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy. PLoS One 12(5):e0178011. https://doi.org/10.1371/journal.pone.0178011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Palomares T, Cordero M, Bruzos-Cidon C, Torrecilla M, Ugedo L, Alonso-Varona A (2018) The neuroprotective effect of conditioned medium from human adipose-derived mesenchymal stem cells is impaired by N-acetyl cysteine supplementation. Mol Neurobiol 55(1):13–25

    Article  CAS  PubMed  Google Scholar 

  239. Tan B, Luan Z, Wei X, He Y, Wei G, Johnstone BH, Farlow M, Du Y (2011) AMP-activated kinase mediates adipose stem cell-stimulated neuritogenesis of PC12 cells. Neuroscience 181:40–47. https://doi.org/10.1016/j.neuroscience.2011.02.038

    Article  CAS  PubMed  Google Scholar 

  240. Lu S, Lu C, Han Q, Li J, Du Z, Liao L, Zhao RC (2011) Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation. Toxicology 279(1–3):189–195. https://doi.org/10.1016/j.tox.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  241. Song SY, Chung HM, Sung JH (2010) The pivotal role of VEGF in adipose-derived-stem-cell-mediated regeneration. Expert Opin Biol Ther 10(11):1529–1537. https://doi.org/10.1517/14712598.2010.522987

    Article  CAS  PubMed  Google Scholar 

  242. Hampel U, Klonisch T, Sel S, Schulze U, Garreis F, Seitmann H, Zouboulis CC, Paulsen FP (2013) Insulin-like factor 3 promotes wound healing at the ocular surface. Endocrinology 154(6):2034–2045. https://doi.org/10.1210/en.2012-2201

    Article  CAS  PubMed  Google Scholar 

  243. Kim WS, Park BS, Sung JH (2009) The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther 9(7):879–887. https://doi.org/10.1517/14712590903039684

    Article  CAS  PubMed  Google Scholar 

  244. Kapur SK, Katz AJ (2013) Review of the adipose derived stem cell secretome. Biochimie 95(12):2222–2228. https://doi.org/10.1016/j.biochi.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  245. Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y (2007) Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng 13(6):1185–1195. https://doi.org/10.1089/ten.2006.0315

    Article  CAS  PubMed  Google Scholar 

  246. Salgado AJ, Reis RL, Sousa NJ, Gimble JM (2010) Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 5(2):103–110

    Article  CAS  PubMed  Google Scholar 

  247. Machado Cde V, Telles PD, Nascimento IL (2013) Immunological characteristics of mesenchymal stem cells. Rev Bras Hematol Hemoter 35(1):62–67. https://doi.org/10.5581/1516-8484.20130017

    Article  PubMed  Google Scholar 

  248. Kiess W, Petzold S, Topfer M, Garten A, Bluher S, Kapellen T, Korner A, Kratzsch J (2008) Adipocytes and adipose tissue. Best Pract Res Clin Endocrinol Metab 22(1):135–153. https://doi.org/10.1016/j.beem.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  249. Yang C, Lei D, Ouyang W, Ren J, Li H, Hu J, Huang S (2014) Conditioned media from human adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells efficiently induced the apoptosis and differentiation in human glioma cell lines in vitro. Biomed Res Int 2014:109389. https://doi.org/10.1155/2014/109389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Szekiova E, Slovinska L, Blasko J, Plsikova J, Cizkova D (2018) The neuroprotective effect of rat adipose tissue-derived mesenchymal stem cell-conditioned medium on cortical neurons using an in vitro model of SCI inflammation. Neurol Res 40(4):258–267. https://doi.org/10.1080/01616412.2018.1432266

    Article  PubMed  Google Scholar 

  251. Zhao K, Li R, Gu C, Liu L, Jia Y, Guo X, Zhang W, Pei C et al (2017) Intravenous administration of adipose-derived stem cell protein extracts improves neurological deficits in a rat model of stroke. Stem Cells Int 2017:2153629. https://doi.org/10.1155/2017/2153629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Jha KA, Pentecost M, Lenin R, Klaic L, Elshaer SL, Gentry J, Russell JM, Beland A, et al. (2018) Concentrated conditioned media from adipose tissue derived mesenchymal stem cells mitigates visual deficits and retinal inflammation following mild traumatic brain injury. Int J Mol Sci 19(7). pii: E2016https://doi.org/10.3390/ijms19072016

  253. Sofroniew MV (2014) Astrogliosis. Cold Spring Harb Perspect Biol 7(2):a020420. https://doi.org/10.1101/cshperspect.a020420

    Article  CAS  PubMed  Google Scholar 

  254. Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16(1):79–106. https://doi.org/10.1177/1073858409342593

    Article  CAS  PubMed  Google Scholar 

  255. Ooi YY, Dheen ST, Tay SS (2015) Paracrine effects of mesenchymal stem cells-conditioned medium on microglial cytokines expression and nitric oxide production. Neuroimmunomodulation 22(4):233–242. https://doi.org/10.1159/000365483

    Article  CAS  PubMed  Google Scholar 

  256. Giunti D, Parodi B, Usai C, Vergani L, Casazza S, Bruzzone S, Mancardi G, Uccelli A (2012) Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1. Stem Cells 30(9):2044–2053. https://doi.org/10.1002/stem.1174

    Article  CAS  PubMed  Google Scholar 

  257. Huang L, Xu G, Guo J, Xie M, Chen L, Xu W (2016) Mesenchymal stem cells modulate light-induced activation of retinal microglia through CX3CL1/CX3CR1 signaling. Ocul Immunol Inflamm 24(6):684–692. https://doi.org/10.3109/09273948.2015.1071405

    Article  CAS  PubMed  Google Scholar 

  258. Torrente D, Avila MF, Cabezas R, Morales L, Gonzalez J, Samudio I, Barreto GE (2014) Paracrine factors of human mesenchymal stem cells increase wound closure and reduce reactive oxygen species production in a traumatic brain injury in vitro model. Hum Exp Toxicol 33(7):673–684. https://doi.org/10.1177/0960327113509659

    Article  CAS  PubMed  Google Scholar 

  259. Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE (2018) Blockade of neuroglobin reduces protection of conditioned medium from human mesenchymal stem cells in human astrocyte model (T98G) under a scratch assay. Mol Neurobiol 55(3):2285–2300. https://doi.org/10.1007/s12035-017-0481-y

    Article  CAS  PubMed  Google Scholar 

  260. Baez-Jurado E, Hidalgo-Lanussa O, Guio-Vega G, Ashraf GM, Echeverria V, Aliev G, Barreto GE (2018) Conditioned medium of human adipose mesenchymal stem cells increases wound closure and protects human astrocytes following scratch assay in vitro. Mol Neurobiol 55(6):5377–5392. https://doi.org/10.1007/s12035-017-0771-4

    Article  CAS  PubMed  Google Scholar 

  261. Huang W, Lv B, Zeng H, Shi D, Liu Y, Chen F, Li F, Liu X et al (2015) Paracrine factors secreted by MSCs promote astrocyte survival associated with GFAP downregulation after ischemic stroke via p38 MAPK and JNK. J Cell Physiol 230(10):2461–2475. https://doi.org/10.1002/jcp.24981

    Article  CAS  PubMed  Google Scholar 

  262. Salgado AJ, Fraga JS, Mesquita AR, Neves NM, Reis RL, Sousa N (2010) Role of human umbilical cord mesenchymal progenitors conditioned media in neuronal/glial cell densities, viability, and proliferation. Stem Cells Dev 19(7):1067–1074. https://doi.org/10.1089/scd.2009.0279

    Article  CAS  PubMed  Google Scholar 

  263. Teixeira FG, Carvalho MM, Neves-Carvalho A, Panchalingam KM, Behie LA, Pinto L, Sousa N, Salgado AJ (2015) Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation. Stem Cell Rev 11(2):288–297. https://doi.org/10.1007/s12015-014-9576-2

    Article  CAS  Google Scholar 

  264. Song M, Jue SS, Cho YA, Kim EC (2015) Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. J Neurosci Res 93(6):973–983. https://doi.org/10.1002/jnr.23569

    Article  CAS  PubMed  Google Scholar 

  265. Anne Stetler R, Leak RK, Gao Y, Chen J (2013) The dynamics of the mitochondrial organelle as a potential therapeutic target. J Cereb Blood Flow Metab 33(1):22–32. https://doi.org/10.1038/jcbfm.2012.158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was in part funded by PUJ grant (ID no. 7115) to GEB. We also acknowledge scholarships for doctoral studies granted by the Vicerrectoría Académica of PUJ to Baez-Jurado E and Hidalgo-Lanussa O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Barreto.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baez-Jurado, E., Hidalgo-Lanussa, O., Barrera-Bailón, B. et al. Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Mol Neurobiol 56, 6902–6927 (2019). https://doi.org/10.1007/s12035-019-1570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1570-x

Keywords

Navigation