Skip to main content

Advertisement

Log in

Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data are fully available.

Abbreviations

I/R:

Ischemia/reperfusion

ROS:

Reactive oxygen species

mtDNA:

Mitochondrial DNA

Drp1:

Dynamin-related protein 1

Mff:

Mitochondrial fission factor

Fis1:

Fission protein-1

MiD49:

Mitochondrial dynamics proteins 49

MiD51:

Mitochondrial dynamics proteins 51

OMM:

Outer mitochondrial membrane

Opa1:

Optic atrophy protein-1

Mfn1:

Mitofusin 1

Mfn2:

Mitofusin 2

IMM:

Inner mitochondrial membrane

ER:

Endoplasmic reticulum

L-Opa1:

Long Opa1

S-Opa1:

Short Opa1

PGC-1α:

Peroxisome proliferator-activated receptor γ co-activator 1α

PINK1:

Phosphatase and tensin homolog-induced kinase 1

BNIP3:

BCL2 and adenovirus E1B 19-kDa-interacting protein 3

FUNDC1:

FUN14 domain containing 1

MCAO:

Middle cortical artery occlusion

OGD/R:

Oxygen–glucose deprivation/reperfusion

tMCAO:

Transient middle cerebral artery occlusion

IF1:

The mitochondrial F1Fo-ATPase inhibitory factor 1

MCU:

Mitochondrial calcium uniporter

3-MA:

3-Methyladenine

Nurr1:

Nuclear receptor related 1 protein

Yap:

Yes-associated protein

INF2:

Inverted formin 2

Nur77:

Nuclear hormone receptor NUR/77

Sirt3:

Sirtuin 3

DUSP1:

Dual-specificity phosphatase-1

JNK:

C-Jun N-terminal kinase

MIEF1:

Mitochondrial elongation factor 1

DLP1:

Dynamin-like protein 1

ROCK1:

Rho-associated protein kinase 1

i.c.v:

Intracerebroventricular

i.p.:

Intraperitoneally

i.v.:

Intravenous

EA:

Electroacupuncture

XXMD:

Xiao-Xu-Ming Decoction

RIPC:

Remote ischemic postconditioning

THC:

Tetrahydrocurcumin

ATF4:

Activating transcription factor 4

NLRP3:

Nod-like receptor protein 3

NR4A1:

Nuclear receptor subfamily 4 group A member 1

MAPK:

Mitogen-activated protein kinase

ERK:

Extracellular regulated protein kinases

CREB:

CAMP-response element binding protein

HSPB8:

Heat shock protein B8

ATP:

Adenosine triphosphate

PCN:

Primary cortical neuronal

PHN:

Primary hippocampal neurons

ΔΨm:

Mitochondrial transmembrane potential

P:

Phosphorylation

Ub:

Ubiquitination

VDAC1:

Voltage-dependent anion-selective channel 1

Miro:

Mitochondrial rho GTPase 1

NBR1:

Neighbor of BRCA1

NDP52:

Nuclear dot protein 52

LC3:

Light chain-3 protein

MOMP:

Mitochondrial outer membrane permeabilization

mPTP:

Mitochondrial permeability transition pore

MMP:

Mitochondrial membrane potential

RNS:

Reactive nitrogen species

NMDAR:

N-methyl-D-aspartate receptors

TNFR1:

Tumor necrosis factor receptor 1

mTORC1:

Mechanistic target of rapamycin complex 1

AMPK:

5′-AMP-activated kinase

ULK1/2:

Unc-51-like autophagy-activating kinase 1/2

PI3K:

Phosphatidylinositol 3-kinase

Cyt c:

Cytochrome c

APAF-1:

Apoptotic protease activating factor 1

PARP:

Poly (ADP-ribose) polymerase

RIPK:

Receptor-interacting protein kinase

FADD:

Fas-associating protein with a novel death domain

TRADD:

TNF receptor-associated death domain

MLKL:

Mixed-lineage kinase domain-like pseudokinase

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O’Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528. https://doi.org/10.1161/cir.0000000000000659

    Article  PubMed  Google Scholar 

  2. Poustchi F, Amani H, Ahmadian Z, Niknezhad SV, Mehrabi S, Santos HA, Shahbazi MA (2021) Combination therapy of killing diseases by injectable hydrogels: from concept to medical applications. Adv Healthcare Mater 10(3):e2001571. https://doi.org/10.1002/adhm.202001571

    Article  CAS  Google Scholar 

  3. van den Berg LA, Dijkgraaf MG, Berkhemer OA, Fransen PS, Beumer D, Lingsma HF, Majoie CB, Dippel DW, van der Lugt A, van Oostenbrugge RJ, van Zwam WH, Roos YB (2017) Two-Year outcome after endovascular treatment for acute ischemic stroke. N Engl J Med 376(14):1341–1349. https://doi.org/10.1056/NEJMoa1612136

    Article  PubMed  Google Scholar 

  4. Johnston SC, Easton JD, Farrant M, Barsan W, Conwit RA, Elm JJ, Kim AS, Lindblad AS, Palesch YY (2018) Clopidogrel and Aspirin in acute ischemic stroke and high-risk TIA. N Engl J Med 379(3):215–225. https://doi.org/10.1056/NEJMoa1800410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Catanese L, Tarsia J, Fisher M (2017) Acute Ischemic stroke therapy overview. Circ Res 120(3):541–558. https://doi.org/10.1161/circresaha.116.309278

    Article  CAS  PubMed  Google Scholar 

  6. Smith EE, Saver JL, Cox M, Liang L, Matsouaka R, Xian Y, Bhatt DL, Fonarow GC, Schwamm LH (2017) Increase in endovascular therapy in get with the guidelines-stroke after the publication of pivotal trials. Circulation 136(24):2303–2310. https://doi.org/10.1161/circulationaha.117.031097

    Article  PubMed  Google Scholar 

  7. Aronowski J, Strong R, Grotta JC (1997) Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab 17(10):1048–1056. https://doi.org/10.1097/00004647-199710000-00006

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Ma X, Yu W, Lou Z, Mu D, Wang Y, Shen B, Qi S (2012) Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemia in rats. PLoS ONE 7(9):e46498. https://doi.org/10.1371/journal.pone.0046498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M (2020) Mitochondria as a therapeutic target for ischemic stroke. Free Radical Biol Med 146:45–58. https://doi.org/10.1016/j.freeradbiomed.2019.11.005

    Article  CAS  Google Scholar 

  10. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317. https://doi.org/10.1016/b978-0-12-394309-5.00006-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martin JL, Gruszczyk AV, Beach TE, Murphy MP, Saeb-Parsy K (2019) Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury. Pediatr Nephro 34(7):1167–1174. https://doi.org/10.1007/s00467-018-3984-5

    Article  Google Scholar 

  12. Giorgi C, Marchi S, Simoes ICM, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jedrak P, Pierzynowska K, Szymanski J, Wang DQ, Portincasa P, Wegrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR (2018) Mitochondria and reactive oxygen species in aging and age-related diseases. Int Rev Cell Mol Biol 340:209–344. https://doi.org/10.1016/bs.ircmb.2018.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang C, He L, Liu J, Dong Z (2015) Mitophagy: basic mechanism and potential role in kidney diseases. Kidney Dis (Basel) 1(1):71–79. https://doi.org/10.1159/000381510

    Article  Google Scholar 

  14. Zhang Y, Wang Y, Xu J, Tian F, Hu S, Chen Y, Fu Z (2019) Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J Pineal Res 66(2):e12542. https://doi.org/10.1111/jpi.12542

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, Zheng Y, Deng T, Yan H, Li W, Hou WW, Lu J, Shen Y, Dai H, Hu WW, Zhang Z, Chen Z (2014) Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: involvement of PARK2-dependent mitophagy. Autophagy 10(10):1801–1813. https://doi.org/10.4161/auto.32136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen Z, Zheng Y, Wu J, Chen Y, Wu X, Zhou Y, Yuan Y, Lu S, Jiang L, Qin Z, Chen Z, Hu W, Zhang X (2017) PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy 13(3):473–485. https://doi.org/10.1080/15548627.2016.1274596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang C, Han H, Yan M, Zhu S, Liu J, Liu Z, He L, Tan J, Liu Y, Liu H, Sun L, Duan S, Peng Y, Liu F, Yin XM, Zhang Z, Dong Z (2018) PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 14(5):880–897. https://doi.org/10.1080/15548627.2017.1405880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Livingston MJ, Wang J, Zhou J, Wu G, Ganley IG, Hill JA, Yin XM, Dong Z (2019) Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy 15(12):2142–2162. https://doi.org/10.1080/15548627.2019.1615822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo C, Zhang Y, Guo H, Han X, Ren J, Liu J (2020) Ferulic acid attenuates hypoxia/reoxygenation injury by suppressing mitophagy through the PINK1/Parkin signaling pathway in H9c2 cells. Front Pharmacol 11:103. https://doi.org/10.3389/fphar.2020.00103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou H, Zhang Y, Hu S, Shi C, Zhu P, Ma Q, Jin Q, Cao F, Tian F, Chen Y (2017) Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. Journal of Pineal Research 63 (1). https://doi.org/10.1111/jpi.12413

  21. Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C (2021) Different roles of mitochondria in cell death and inflammation: focusing on mitochondrial quality control in ischemic stroke and reperfusion. Biomedicines 9 (2). https://doi.org/10.3390/biomedicines9020169

  22. Ahnstedt H, Sweet J, Cruden P, Bishop N, Cipolla MJ (2016) Effects of early post-ischemic reperfusion and tPA on cerebrovascular function and nitrosative stress in female rats. Transl Stroke Res 7(3):228–238. https://doi.org/10.1007/s12975-016-0468-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gomez CR (2018) Time is brain: the stroke theory of relativity. J Stroke Cerebrovasc Dis 27(8):2214–2227. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.04.001

    Article  PubMed  Google Scholar 

  24. Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435. https://doi.org/10.1038/nature13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li H, Xia Z, Chen Y, Qi D, Zheng H (2018) Mechanism and therapies of oxidative stress-mediated cell death in ischemia reperfusion injury. Oxid Med Cell Longev 2018:2910643. https://doi.org/10.1155/2018/2910643

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Huttemann M (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23. https://doi.org/10.1007/s12035-012-8344-z

    Article  CAS  PubMed  Google Scholar 

  27. Panel M, Ruiz I, Brillet R, Lafdil F, Teixeira-Clerc F, Nguyen CT, Calderaro J, Gelin M, Allemand F, Guichou JF, Ghaleh B, Ahmed-Belkacem A, Morin D, Pawlotsky JM (2019) Small-molecule inhibitors of cyclophilins block opening of the mitochondrial permeability transition pore and protect mice from hepatic ischemia/reperfusion injury. Gastroenterology 157(5):1368–1382. https://doi.org/10.1053/j.gastro.2019.07.026

    Article  CAS  PubMed  Google Scholar 

  28. Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, Li CY, Li CJ (2018) Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 46(4):1650–1667. https://doi.org/10.1159/000489241

    Article  CAS  PubMed  Google Scholar 

  29. Amani H, Mostafavi E, Alebouyeh MR, Arzaghi H, Akbarzadeh A, Pazoki-Toroudi H, Webster TJ (2019) Would colloidal gold nanocarriers present an effective diagnosis or treatment for ischemic stroke? Int J Nanomed 14:8013–8031. https://doi.org/10.2147/ijn.s210035

    Article  CAS  Google Scholar 

  30. Suliman HB, Piantadosi CA (2016) Mitochondrial quality control as a therapeutic target. Pharmacol Rev 68(1):20–48. https://doi.org/10.1124/pr.115.011502

    Article  CAS  PubMed  Google Scholar 

  31. Pernas L, Scorrano L (2016) Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78:505–531. https://doi.org/10.1146/annurev-physiol-021115-105011

    Article  CAS  PubMed  Google Scholar 

  32. Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17(4):491–506. https://doi.org/10.1016/j.cmet.2013.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gomes LC, Scorrano L (2008) High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochem Biophys Acta 1777(7–8):860–866. https://doi.org/10.1016/j.bbabio.2008.05.442

    Article  CAS  PubMed  Google Scholar 

  34. Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochem Biophys Acta 1777(9):1092–1097. https://doi.org/10.1016/j.bbabio.2008.05.001

    Article  CAS  PubMed  Google Scholar 

  35. Murata D, Arai K, Iijima M, Sesaki H (2020) Mitochondrial division, fusion and degradation. J Biochem 167(3):233–241. https://doi.org/10.1093/jb/mvz106

    Article  CAS  PubMed  Google Scholar 

  36. Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780. https://doi.org/10.1146/annurev.biochem.76.071905.090048

    Article  CAS  PubMed  Google Scholar 

  37. Saito T, Sadoshima J (2015) Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res 116(8):1477–1490. https://doi.org/10.1161/circresaha.116.303790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S (2006) MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep 7(10):1019–1022. https://doi.org/10.1038/sj.embor.7400790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jhun BS, J OU, Adaniya SM, Mancini TJ, Cao JL, King ME, Landi AK, Ma H, Shin M, Yang D, Xu X, Yoon Y, Choudhary G, Clements RT, Mende U, Sheu SS (2018) Protein kinase D activation induces mitochondrial fragmentation and dysfunction in cardiomyocytes. J Physiol 596(5):827–855. https://doi.org/10.1113/jp275418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dickey AS, Strack S (2011) PKA/AKAP1 and PP2A/Bβ2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci 31(44):15716–15726. https://doi.org/10.1523/jneurosci.3159-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Osellame LD, Singh AP, Stroud DA, Palmer CS, Stojanovski D, Ramachandran R, Ryan MT (2016) Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J Cell Sci 129(11):2170–2181. https://doi.org/10.1242/jcs.185165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT (2011) MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12(6):565–573. https://doi.org/10.1038/embor.2011.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Z, Liu L, Wu S, Xing D (2016) Drp1, Mff, Fis1, and MiD51 are coordinated to mediate mitochondrial fission during UV irradiation-induced apoptosis. FASEB J 30(1):466–476. https://doi.org/10.1096/fj.15-274258

    Article  CAS  PubMed  Google Scholar 

  44. Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D, Ryan MT (2013) Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J Biol Chem 288(38):27584–27593. https://doi.org/10.1074/jbc.M113.479873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Losón OC, Song Z, Chen H, Chan DC (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24(5):659–667. https://doi.org/10.1091/mbc.E12-10-0721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Disatnik MH, Ferreira JC, Campos JC, Gomes KS, Dourado PM, Qi X, Mochly-Rosen D (2013) Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc 2(5):e000461. https://doi.org/10.1161/jaha.113.000461

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen KH, Dasgupta A, Lin J, Potus F, Bonnet S, Iremonger J, Fu J, Mewburn J, Wu D, Dunham-Snary K, Theilmann AL, Jing ZC, Hindmarch C, Ormiston ML, Lawrie A, Archer SL (2018) Epigenetic dysregulation of the dynamin-related protein 1 binding partners MiD49 and MiD51 increases mitotic mitochondrial fission and promotes pulmonary arterial hypertension: mechanistic and therapeutic implications. Circulation 138(3):287–304. https://doi.org/10.1161/circulationaha.117.031258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kornfeld OS, Qvit N, Haileselassie B, Shamloo M, Bernardi P, Mochly-Rosen D (2018) Interaction of mitochondrial fission factor with dynamin related protein 1 governs physiological mitochondrial function in vivo. Sci Rep 8(1):14034. https://doi.org/10.1038/s41598-018-32228-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sanderson TH, Raghunayakula S, Kumar R (2015) Neuronal hypoxia disrupts mitochondrial fusion. Neuroscience 301:71–78. https://doi.org/10.1016/j.neuroscience.2015.05.078

    Article  CAS  PubMed  Google Scholar 

  50. Kumar R, Bukowski MJ, Wider JM, Reynolds CA, Calo L, Lepore B, Tousignant R, Jones M, Przyklenk K, Sanderson TH (2016) Mitochondrial dynamics following global cerebral ischemia. Mol Cell Neurosci 76:68–75. https://doi.org/10.1016/j.mcn.2016.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Z, Yu J (2018) Nurr1 exacerbates cerebral ischemia-reperfusion injury via modulating YAP-INF2-mitochondrial fission pathways. Int J Biochem Cell Biol 104:149–160. https://doi.org/10.1016/j.biocel.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  52. Zhao H, Pan W, Chen L, Luo Y, Xu R (2018) Nur77 promotes cerebral ischemia-reperfusion injury via activating INF2-mediated mitochondrial fragmentation. J Mol Histol 49(6):599–613. https://doi.org/10.1007/s10735-018-9798-8

    Article  CAS  PubMed  Google Scholar 

  53. Zhao H, Luo Y, Chen L, Zhang Z, Shen C, Li Y, Xu R (2018) Sirt3 inhibits cerebral ischemia-reperfusion injury through normalizing Wnt/β-catenin pathway and blocking mitochondrial fission. Cell Stress Chaperones 23(5):1079–1092. https://doi.org/10.1007/s12192-018-0917-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu P, Zhang G, Sha L, Hou S (2018) DUSP1 alleviates cerebral ischaemia reperfusion injury via inactivating JNK-Mff pathways and repressing mitochondrial fission. Life Sci 210:251–262. https://doi.org/10.1016/j.lfs.2018.08.049

    Article  CAS  PubMed  Google Scholar 

  55. Zhao L, Li S, Wang S, Yu N, Liu J (2015) The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury. Biochem Biophys Res Commun 461(3):537–542. https://doi.org/10.1016/j.bbrc.2015.04.066

    Article  CAS  PubMed  Google Scholar 

  56. Zhang XM, Zhang L, Wang G, Niu W, He Z, Ding L, Jia J (2015) Suppression of mitochondrial fission in experimental cerebral ischemia: the potential neuroprotective target of p38 MAPK inhibition. Neurochem Int 90:1–8. https://doi.org/10.1016/j.neuint.2015.06.010

    Article  CAS  PubMed  Google Scholar 

  57. Geng C, Wei J, Wu C (2018) Yap-Hippo pathway regulates cerebral hypoxia-reoxygenation injury in neuroblastoma N2a cells via inhibiting ROCK1/F-actin/mitochondrial fission pathways. Acta Neurol Belg. https://doi.org/10.1007/s13760-018-0944-6

    Article  PubMed  Google Scholar 

  58. He M, Ma Y, Wang R, Zhang J, Jing L, Li PA (2020) Deletion of mitochondrial uncoupling protein 2 exacerbates mitochondrial damage in mice subjected to cerebral ischemia and reperfusion injury under both normo- and hyperglycemic conditions. Int J Biol Sci 16(15):2788–2802. https://doi.org/10.7150/ijbs.48204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tian L, Potus F, Wu D, Dasgupta A, Chen KH, Mewburn J, Lima P, Archer SL (2018) Increased Drp1-mediated mitochondrial fission promotes proliferation and collagen production by right ventricular fibroblasts in experimental pulmonary arterial hypertension. Front Physiol 9:828. https://doi.org/10.3389/fphys.2018.00828

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li R, Xin T, Li D, Wang C, Zhu H, Zhou H (2018) Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: the role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biol 18:229–243. https://doi.org/10.1016/j.redox.2018.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mishra P, Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 212(4):379–387. https://doi.org/10.1083/jcb.201511036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schrepfer E, Scorrano L (2016) Mitofusins, from mitochondria to metabolism. Mol Cell 61(5):683–694. https://doi.org/10.1016/j.molcel.2016.02.022

    Article  CAS  PubMed  Google Scholar 

  63. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155(1):160–171. https://doi.org/10.1016/j.cell.2013.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Patten DA, Wong J, Khacho M, Soubannier V, Mailloux RJ, Pilon-Larose K, MacLaurin JG, Park DS, McBride HM, Trinkle-Mulcahy L, Harper ME, Germain M, Slack RS (2014) OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J 33(22):2676–2691. https://doi.org/10.15252/embj.201488349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sisalli MJ, Ianniello G, Savoia C, Cuomo O, Annunziato L, Scorziello A (2020) Knocking-out the Siah2 E3 ubiquitin ligase prevents mitochondrial NCX3 degradation, regulates mitochondrial fission and fusion, and restores mitochondrial function in hypoxic neurons. Cell Commun Signal 18(1):42. https://doi.org/10.1186/s12964-020-0529-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Papanicolaou KN, Phillippo MM, Walsh K (2012) Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion. Am J Physiol Heart Circ Physiol 303(3):H243-255. https://doi.org/10.1152/ajpheart.00185.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Faelber K, Dietrich L, Noel JK, Wollweber F, Pfitzner AK, Mühleip A, Sánchez R, Kudryashev M, Chiaruttini N, Lilie H, Schlegel J, Rosenbaum E, Hessenberger M, Matthaeus C, Kunz S, von der Malsburg A, Noé F, Roux A, van der Laan M, Kühlbrandt W, Daumke O (2019) Structure and assembly of the mitochondrial membrane remodelling GTPase Mgm1. Nature 571(7765):429–433. https://doi.org/10.1038/s41586-019-1372-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ishihara N, Fujita Y, Oka T, Mihara K (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25(13):2966–2977. https://doi.org/10.1038/sj.emboj.7601184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaser M, Kambacheld M, Kisters-Woike B, Langer T (2003) Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J Biol Chem 278(47):46414–46423. https://doi.org/10.1074/jbc.M305584200

    Article  CAS  PubMed  Google Scholar 

  70. MacVicar T, Langer T (2016) OPA1 processing in cell death and disease - the long and short of it. J Cell Sci 129(12):2297–2306. https://doi.org/10.1242/jcs.159186

    Article  CAS  PubMed  Google Scholar 

  71. Griparic L, Kanazawa T, van der Bliek AM (2007) Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 178(5):757–764. https://doi.org/10.1083/jcb.200704112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Song Z, Chen H, Fiket M, Alexander C, Chan DC (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178(5):749–755. https://doi.org/10.1083/jcb.200704110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yin W, Li R, Feng X, James Kang Y (2018) The involvement of cytochrome c oxidase in mitochondrial fusion in primary cultures of neonatal rat cardiomyocytes. Cardiovasc Toxicol 18(4):365–373. https://doi.org/10.1007/s12012-018-9447-1

    Article  CAS  PubMed  Google Scholar 

  74. Anderson CJ, Kahl A, Fruitman H, Qian L, Zhou P, Manfredi G, Iadecola C (2019) Prohibitin levels regulate OMA1 activity and turnover in neurons. Cell Death Differ. https://doi.org/10.1038/s41418-019-0469-4

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schulman JJ, Szczesniak LM, Bunker EN, Nelson HA, Roe MW, Wagner LE 2nd, Yule DI, Wojcikiewicz RJH (2019) Bok regulates mitochondrial fusion and morphology. Cell Death Differ 26(12):2682–2694. https://doi.org/10.1038/s41418-019-0327-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bohovych I, Fernandez MR, Rahn JJ, Stackley KD, Bestman JE, Anandhan A, Franco R, Claypool SM, Lewis RE, Chan SS, Khalimonchuk O (2015) Metalloprotease Oma1 Fine-tunes mitochondrial bioenergetic function and respiratory supercomplex stability. Sci Rep 5:13989. https://doi.org/10.1038/srep13989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T (2014) The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204(6):919–929. https://doi.org/10.1083/jcb.201308006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Möpert K, Hajek P, Frank S, Chen C, Kaufmann J, Santel A (2009) Loss of Drp1 function alters OPA1 processing and changes mitochondrial membrane organization. Exp Cell Res 315(13):2165–2180. https://doi.org/10.1016/j.yexcr.2009.04.016

    Article  CAS  PubMed  Google Scholar 

  79. Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27(2):105–117. https://doi.org/10.1016/j.tem.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  80. Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, Martinou JC, Westermann B, Rugarli EI, Langer T (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187(7):1023–1036. https://doi.org/10.1083/jcb.200906084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM (2009) Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187(7):959–966. https://doi.org/10.1083/jcb.200906083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Baricault L, Ségui B, Guégand L, Olichon A, Valette A, Larminat F, Lenaers G (2007) OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals. Exp Cell Res 313(17):3800–3808. https://doi.org/10.1016/j.yexcr.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  83. Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Löwer B, Wunderlich FT, von Kleist-Retzow JC, Waisman A, Westermann B, Langer T (2008) Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev 22(4):476–488. https://doi.org/10.1101/gad.460708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sobrado M, Ramirez BG, Neria F, Lizasoain I, Arbones ML, Minami T, Redondo JM, Moro MA, Cano E (2012) Regulator of calcineurin 1 (Rcan1) has a protective role in brain ischemia/reperfusion injury. J Neuroinflammation 9:48. https://doi.org/10.1186/1742-2094-9-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Aurora AB, Mahmoud AI, Luo X, Johnson BA, van Rooij E, Matsuzaki S, Humphries KM, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2012) MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. J Clin Investig 122(4):1222–1232. https://doi.org/10.1172/jci59327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang JX, Jiao JQ, Li Q, Long B, Wang K, Liu JP, Li YR, Li PF (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17(1):71–78. https://doi.org/10.1038/nm.2282

    Article  CAS  PubMed  Google Scholar 

  87. Kumari S, Anderson L, Farmer S, Mehta SL, Li PA (2012) Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion. Transl Stroke Res 3(2):296–304. https://doi.org/10.1007/s12975-012-0158-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lan S, Liu J, Luo X, Bi C (2019) Effects of melatonin on acute brain reperfusion stress: role of Hippo signaling pathway and MFN2-related mitochondrial protection. Cell Stress Chaperones 24(1):235–245. https://doi.org/10.1007/s12192-018-00960-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wei N, Pu Y, Yang Z, Pan Y, Liu L (2019) Therapeutic effects of melatonin on cerebral ischemia reperfusion injury: Role of Yap-OPA1 signaling pathway and mitochondrial fusion. Biomed Pharmacother 110:203–212. https://doi.org/10.1016/j.biopha.2018.11.060

    Article  CAS  PubMed  Google Scholar 

  90. Lai Y, Lin P, Chen M, Zhang Y, Chen J, Zheng M, Liu J, Du H, Chen R, Pan X, Liu N, Chen H (2020) Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function. Redox Biology:101503. https://doi.org/10.1016/j.redox.2020.101503

  91. Yang M, Linn BS, Zhang Y (1865) Ren J (2019) Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. Biochim Biophys Acta 9:2293–2302. https://doi.org/10.1016/j.bbadis.2019.05.007

    Article  CAS  Google Scholar 

  92. Duann P, Lin PH (2017) Mitochondria damage and kidney disease. Adv Exp Med Biol 982:529–551. https://doi.org/10.1007/978-3-319-55330-6_27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang L, Chen M, Yuan L, Xiang Y, Zheng R, Zhu S (2014) 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis. Biochem Biophys Res Commun 450(1):604–609. https://doi.org/10.1016/j.bbrc.2014.06.022

    Article  CAS  PubMed  Google Scholar 

  94. Wang P, Yao L, Zhou LL, Liu YS, Chen MD, Wu HD, Chang RM, Li Y, Zhou MG, Fang XS, Yu T, Jiang LY, Huang ZT (2016) Carbon monoxide improves neurologic outcomes by mitochondrial biogenesis after global Cerebral ischemia induced by cardiac arrest in rats. Int J Biol Sci 12(8):1000–1009. https://doi.org/10.7150/ijbs.13222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yu K, Kuang S, Wang C, Wang Y, Liu G, Xie H, Jiang C, Wu J, Wang N, Wu Y (2020) Changes in mitochondria-associated protein expression and mitochondrial function in response to 2 weeks of enriched environment training after cerebral ischaemia-reperfusion injury. J Mol Neurosci 70(3):413–421. https://doi.org/10.1007/s12031-019-01428-3

    Article  CAS  PubMed  Google Scholar 

  96. Pan H, Xie X, Chen D, Zhang J, Zhou Y, Yang G (2014) Protective and biogenesis effects of sodium hydrosulfide on brain mitochondria after cardiac arrest and resuscitation. Eur J Pharmacol 741:74–82. https://doi.org/10.1016/j.ejphar.2014.07.037

    Article  CAS  PubMed  Google Scholar 

  97. Xia PP, Zhang F, Chen C, Wang ZH, Wang N, Li LY, Guo QL, Ye Z (2020) Rac1 relieves neuronal injury induced by oxygenglucose deprivation and re-oxygenation via regulation of mitochondrial biogenesis and function. Neural Regen Res 15(10):1937–1946. https://doi.org/10.4103/1673-5374.280325

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124. https://doi.org/10.1016/s0092-8674(00)80611-x

    Article  CAS  PubMed  Google Scholar 

  99. Tran M, Parikh SM (2014) Mitochondrial biogenesis in the acutely injured kidney. Nephron Clin Pract 127(1–4):42–45. https://doi.org/10.1159/000363715

    Article  CAS  PubMed  Google Scholar 

  100. Quirós PM, Mottis A, Auwerx J (2016) Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 17(4):213–226. https://doi.org/10.1038/nrm.2016.23

    Article  CAS  PubMed  Google Scholar 

  101. Jia L, Wang J, Cao H, Zhang X, Rong W, Xu Z (2020) Activation of PGC-1α and mitochondrial biogenesis protects against prenatal hypoxic-ischemic brain injury. Neuroscience 432:63–72. https://doi.org/10.1016/j.neuroscience.2020.02.035

    Article  CAS  PubMed  Google Scholar 

  102. Liu L, Zhang W, Wang L, Li Y, Tan B, Lu X, Deng Y, Zhang Y, Guo X, Mu J, Yu G (2014) Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem Res 39(7):1322–1331. https://doi.org/10.1007/s11064-014-1315-1

    Article  CAS  PubMed  Google Scholar 

  103. Chen S, Sun M, Zhao X, Yang Z, Liu W, Cao J, Qiao Y, Luo X, Wen A (2019) Neuroprotection of hydroxysafflor yellow A in experimental cerebral ischemia/reperfusion injury via metabolic inhibition of phenylalanine and mitochondrial biogenesis. Mol Med Rep 19(4):3009–3020. https://doi.org/10.3892/mmr.2019.9959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang W, Jin Y, Wang D, Cui J (2020) Neuroprotective effects of leptin on cerebral ischemia through JAK2/STAT3/PGC-1-mediated mitochondrial function modulation. Brain Res Bull 156:118–130. https://doi.org/10.1016/j.brainresbull.2020.01.002

    Article  CAS  PubMed  Google Scholar 

  105. Ma X, Xie Y, Chen Y, Han B, Li J, Qi S (2016) Post-ischemia mdivi-1 treatment protects against ischemia/reperfusion-induced brain injury in a rat model. Neurosci Lett 632:23–32. https://doi.org/10.1016/j.neulet.2016.08.026

    Article  CAS  PubMed  Google Scholar 

  106. Li L, Xiao L, Hou Y, He Q, Zhu J, Li Y, Wu J, Zhao J, Yu S, Zhao Y (2016) Sestrin2 silencing exacerbates cerebral ischemia/reperfusion injury by decreasing mitochondrial biogenesis through the AMPK/PGC-1α pathway in rats. Sci Rep 6:30272. https://doi.org/10.1038/srep30272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kaushal GP, Shah SV (2016) Autophagy in acute kidney injury. Kidney Int 89(4):779–791. https://doi.org/10.1016/j.kint.2015.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Knuppertz L, Osiewacz HD (2016) Orchestrating the network of molecular pathways affecting aging: Role of nonselective autophagy and mitophagy. Mech Ageing Dev 153:30–40. https://doi.org/10.1016/j.mad.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  109. Guimaraes RS, Delorme-Axford E, Klionsky DJ, Reggiori F (2015) Assays for the biochemical and ultrastructural measurement of selective and nonselective types of autophagy in the yeast Saccharomyces cerevisiae. Methods 75:141–150. https://doi.org/10.1016/j.ymeth.2014.11.023

    Article  CAS  PubMed  Google Scholar 

  110. Mizumura K, Choi AM, Ryter SW (2014) Emerging role of selective autophagy in human diseases. Front Pharmacol 5:244. https://doi.org/10.3389/fphar.2014.00244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yoshii SR, Mizushima N (2015) Autophagy machinery in the context of mammalian mitophagy. Biochimica et Biophysica acta 1853(10 Pt B):2797–2801. https://doi.org/10.1016/j.bbamcr.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  112. Wang Y, Cai J, Tang C, Dong Z (2020) Mitophagy in acute kidney injury and kidney repair. Cells 9 (2). https://doi.org/10.3390/cells9020338

  113. Owens K, Park JH, Gourley S, Jones H, Kristian T (2015) Mitochondrial dynamics: cell-type and hippocampal region specific changes following global cerebral ischemia. J Bioenerg Biomembr 47(1–2):13–31. https://doi.org/10.1007/s10863-014-9575-7

    Article  CAS  PubMed  Google Scholar 

  114. Wang R, Dong Y, Lu Y, Zhang W, Brann DW, Zhang Q (2019) Photobiomodulation for global cerebral ischemia: targeting mitochondrial dynamics and functions. Mol Neurobiol 56(3):1852–1869. https://doi.org/10.1007/s12035-018-1191-9

    Article  CAS  PubMed  Google Scholar 

  115. Zhao YX, Cui M, Chen SF, Dong Q, Liu XY (2014) Amelioration of ischemic mitochondrial injury and Bax-dependent outer membrane permeabilization by Mdivi-1. CNS Neurosci Ther 20(6):528–538. https://doi.org/10.1111/cns.12266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Baburamani AA, Hurling C, Stolp H, Sobotka K, Gressens P, Hagberg H, Thornton C (2015) Mitochondrial optic atrophy (OPA) 1 processing is altered in response to neonatal hypoxic-ischemic brain injury. Int J Mol Sci 16(9):22509–22526. https://doi.org/10.3390/ijms160922509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yuan Y, Zheng Y, Zhang X, Chen Y, Wu X, Wu J, Shen Z, Jiang L, Wang L, Yang W, Luo J, Qin Z, Hu W, Chen Z (2017) BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy 13(10):1754–1766. https://doi.org/10.1080/15548627.2017.1357792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang RR, Wang X, Hu WW, Wang G, Chen Z (2013) Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 9(9):1321–1333. https://doi.org/10.4161/auto.25132

    Article  CAS  PubMed  Google Scholar 

  119. Zuo W, Zhang S, Xia CY, Guo XF, He WB, Chen NH (2014) Mitochondria autophagy is induced after hypoxic/ischemic stress in a Drp1 dependent manner: the role of inhibition of Drp1 in ischemic brain damage. Neuropharmacology 86:103–115. https://doi.org/10.1016/j.neuropharm.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  120. Di Y, He YL, Zhao T, Huang X, Wu KW, Liu SH, Zhao YQ, Fan M, Wu LY, Zhu LL (2015) Methylene blue reduces acute cerebral ischemic injury via the induction of mitophagy. Mol Med 21(1):420–429. https://doi.org/10.2119/molmed.2015.00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kulek AR, Anzell A, Wider JM, Sanderson TH, Przyklenk K (2020) Mitochondrial quality control: role in cardiac models of lethal ischemia-reperfusion injury. Cells 9 (1). https://doi.org/10.3390/cells9010214

  122. Zheng Y, Zhang X, Wu X, Jiang L, Ahsan A, Ma S, Xiao Z, Han F, Qin ZH, Hu W, Chen Z (2019) Somatic autophagy of axonal mitochondria in ischemic neurons. J Cell Biol 218(6):1891–1907. https://doi.org/10.1083/jcb.201804101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sciarretta S, Maejima Y, Zablocki D, Sadoshima J (2018) The role of autophagy in the heart. Annu Rev Physiol 80:1–26. https://doi.org/10.1146/annurev-physiol-021317-121427

    Article  CAS  PubMed  Google Scholar 

  124. Eiyama A, Okamoto K (2015) PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 33:95–101. https://doi.org/10.1016/j.ceb.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  125. Trancikova A, Tsika E, Moore DJ (2012) Mitochondrial dysfunction in genetic animal models of Parkinson’s disease. Antioxid Redox Signal 16(9):896–919. https://doi.org/10.1089/ars.2011.4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131. https://doi.org/10.1038/ncb2012

    Article  CAS  PubMed  Google Scholar 

  127. Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K, Diep L, Zhang Z, Chiou S, Bova M, Artis DR, Yao N, Baker J, Yednock T, Johnston JA (2013) Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun 4:1982. https://doi.org/10.1038/ncomms2982

    Article  CAS  PubMed  Google Scholar 

  128. Bakthavachalam P, Shanmugam PST (2017) Mitochondrial dysfunction - silent killer in cerebral ischemia. J Neurol Sci 375:417–423. https://doi.org/10.1016/j.jns.2017.02.043

    Article  CAS  PubMed  Google Scholar 

  129. Choi ME (2020) Autophagy in kidney disease. Annu Rev Physiol 82:297–322. https://doi.org/10.1146/annurev-physiol-021119-034658

    Article  CAS  PubMed  Google Scholar 

  130. Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AY, Wood NW (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20(5):867–879. https://doi.org/10.1093/hmg/ddq526

    Article  CAS  PubMed  Google Scholar 

  131. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314. https://doi.org/10.1038/nature14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP (2010) Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 189(4):671–679. https://doi.org/10.1083/jcb.201001039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao TP (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29(5):969–980. https://doi.org/10.1038/emboj.2009.405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang H, Chen S, Zhang Y, Xu H, Sun H (2019) Electroacupuncture ameliorates neuronal injury by Pink1/Parkin-mediated mitophagy clearance in cerebral ischemia-reperfusion. Nitric Oxide Biol Chem 91:23–34. https://doi.org/10.1016/j.niox.2019.07.004

    Article  CAS  Google Scholar 

  135. Wu X, Li X, Liu Y, Yuan N, Li C, Kang Z, Zhang X, Xia Y, Hao Y, Tan Y (2018) Hydrogen exerts neuroprotective effects on OGD/R damaged neurons in rat hippocampal by protecting mitochondrial function via regulating mitophagy mediated by PINK1/Parkin signaling pathway. Brain Res 1698:89–98. https://doi.org/10.1016/j.brainres.2018.06.028

    Article  CAS  PubMed  Google Scholar 

  136. Li Q, Zhang T, Wang J, Zhang Z, Zhai Y, Yang GY, Sun X (2014) Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochem Biophys Res Commun 444(2):182–188. https://doi.org/10.1016/j.bbrc.2014.01.032

    Article  CAS  PubMed  Google Scholar 

  137. Baek SH, Noh AR, Kim KA, Akram M, Shin YJ, Kim ES, Yu SW, Majid A, Bae ON (2014) Modulation of mitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage. Stroke 45(8):2438–2443. https://doi.org/10.1161/strokeaha.114.005183

    Article  PubMed  PubMed Central  Google Scholar 

  138. Feng J, Chen X, Lu S, Li W, Yang D, Su W, Wang X, Shen J (2018) Naringin attenuates cerebral ischemia-reperfusion injury through inhibiting peroxynitrite-mediated mitophagy activation. Mol Neurobiol 55(12):9029–9042. https://doi.org/10.1007/s12035-018-1027-7

    Article  CAS  PubMed  Google Scholar 

  139. Villa E, Marchetti S, Ricci JE (2018) No Parkin zone: mitophagy without Parkin. Trends Cell Biol 28(11):882–895. https://doi.org/10.1016/j.tcb.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  140. Naik PP, Birbrair A, Bhutia SK (2019) Mitophagy-driven metabolic switch reprograms stem cell fate. Cell Mol Life Sci 76(1):27–43. https://doi.org/10.1007/s00018-018-2922-9

    Article  CAS  PubMed  Google Scholar 

  141. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL, Ney PA (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104(49):19500–19505. https://doi.org/10.1073/pnas.0708818104

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zhang J, Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16(7):939–946. https://doi.org/10.1038/cdd.2009.16

    Article  CAS  PubMed  Google Scholar 

  143. Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, Gustafsson AB (2007) Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14(1):146–157. https://doi.org/10.1038/sj.cdd.4401936

    Article  CAS  PubMed  Google Scholar 

  144. Tang C, Han H, Liu Z, Liu Y, Yin L, Cai J, He L, Liu Y, Chen G, Zhang Z, Yin XM, Dong Z (2019) Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury. Cell Death Dis 10(9):677. https://doi.org/10.1038/s41419-019-1899-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Su SH, Wu YF, Wang DP, Hai J (2018) Inhibition of excessive autophagy and mitophagy mediates neuroprotective effects of URB597 against chronic cerebral hypoperfusion. Cell Death Dis 9(7):733. https://doi.org/10.1038/s41419-018-0755-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xu B, Zhu L, Chu J, Ma Z, Fu Q, Wei W, Deng X, Ma S (2019) Esculetin improves cognitive impairments induced by transient cerebral ischaemia and reperfusion in mice via regulation of mitochondrial fragmentation and mitophagy. Behav Brain Res 372:112007. https://doi.org/10.1016/j.bbr.2019.112007

    Article  CAS  PubMed  Google Scholar 

  147. Deng Z, Ou H, Ren F, Guan Y, Huan Y, Cai H, Sun B (2020) LncRNA SNHG14 promotes OGD/R-induced neuron injury by inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22 mouse hippocampal neuronal cells. Biol Res 53(1):38. https://doi.org/10.1186/s40659-020-00304-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang W, Siraj S, Zhang R, Chen Q (2017) Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury. Autophagy 13(6):1080–1081. https://doi.org/10.1080/15548627.2017.1300224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, Huang L, Xue P, Li B, Wang X, Jin H, Wang J, Yang F, Liu P, Zhu Y, Sui S, Chen Q (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14(2):177–185. https://doi.org/10.1038/ncb2422

    Article  CAS  PubMed  Google Scholar 

  150. Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L, Chen Q (2016) Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 12(4):689–702. https://doi.org/10.1080/15548627.2016.1151580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wu L, Zhang D, Zhou L, Pei Y, Zhuang Y, Cui W, Chen J (2019) FUN14 domain-containing 1 promotes breast cancer proliferation and migration by activating calcium-NFATC1-BMI1 axis. EBioMedicine 41:384–394. https://doi.org/10.1016/j.ebiom.2019.02.032

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wang L, Wang P, Dong H, Wang S, Chu H, Yan W, Zhang X (2018) Ulk1/FUNDC1 prevents nerve cells from hypoxia-induced apoptosis by promoting cell autophagy. Neurochem Res 43(8):1539–1548. https://doi.org/10.1007/s11064-018-2568-x

    Article  CAS  PubMed  Google Scholar 

  153. Mao C, Hu C, Zhou Y, Zou R, Li S, Cui Y, Tian W (2020) Electroacupuncture pretreatment against cerebral ischemia/reperfusion injury through mitophagy. Evid Based Complement Alternat Med 2020:7486041. https://doi.org/10.1155/2020/7486041

    Article  PubMed  PubMed Central  Google Scholar 

  154. Zhang Z, Yu J (2018) NR4A1 promotes cerebral ischemia reperfusion injury by repressing Mfn2-mediated mitophagy and inactivating the MAPK-ERK-CREB signaling pathway. Neurochem Res 43(10):1963–1977. https://doi.org/10.1007/s11064-018-2618-4

    Article  CAS  PubMed  Google Scholar 

  155. Li F, Tan J, Zhou F, Hu Z, Yang B (2018) Heat shock protein B8 (HSPB8) reduces oxygen-glucose deprivation/reperfusion injury via the induction of mitophagy. Cell Physiol Biochem 48(4):1492–1504. https://doi.org/10.1159/000492259

    Article  CAS  PubMed  Google Scholar 

  156. He Q, Li Z, Meng C, Wu J, Zhao Y, Zhao J (2019) Parkin-dependent mitophagy is required for the inhibition of ATF4 on NLRP3 inflammasome activation in cerebral ischemia-reperfusion injury in rats. Cells 8 (8). https://doi.org/10.3390/cells8080897

  157. Matic I, Cocco S, Ferraina C, Martin-Jimenez R, Florenzano F, Crosby J, Lupi R, Amadoro G, Russell C, Pignataro G, Annunziato L, Abramov AY, Campanella M (2016) Neuroprotective coordination of cell mitophagy by the ATPase inhibitory factor 1. Pharmacol Res 103:56–68. https://doi.org/10.1016/j.phrs.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  158. Yu S, Zheng S, Leng J, Wang S, Zhao T, Liu J (2016) Inhibition of mitochondrial calcium uniporter protects neurocytes from ischemia/reperfusion injury via the inhibition of excessive mitophagy. Neurosci Lett 628:24–29. https://doi.org/10.1016/j.neulet.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  159. Santo-Domingo J, Demaurex N (2010) Calcium uptake mechanisms of mitochondria. Biochem Biophys Acta 1797(6–7):907–912. https://doi.org/10.1016/j.bbabio.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  160. Lan R, Zhang Y, Wu T, Ma YZ, Wang BQ, Zheng HZ, Li YN, Wang Y, Gu CQ, Wu JT (2018) Xiao-Xu-Ming decoction reduced mitophagy activation and improved mitochondrial function in cerebral ischemia and reperfusion injury. Behav Neurol 2018:4147502. https://doi.org/10.1155/2018/4147502

    Article  PubMed  PubMed Central  Google Scholar 

  161. Li S, Sun X, Xu L, Sun R, Ma Z, Deng X, Liu B, Fu Q, Qu R, Ma S (2017) Baicalin attenuates in vivo and in vitro hyperglycemia-exacerbated ischemia/reperfusion injury by regulating mitochondrial function in a manner dependent on AMPK. Eur J Pharmacol 815:118–126. https://doi.org/10.1016/j.ejphar.2017.07.041

    Article  CAS  PubMed  Google Scholar 

  162. Zhou M, Xia ZY, Lei SQ, Leng Y, Xue R (2015) Role of mitophagy regulated by Parkin/DJ-1 in remote ischemic postconditioning-induced mitigation of focal cerebral ischemia-reperfusion. Eur Rev Med Pharmacol Sci 19(24):4866–4871

    CAS  PubMed  Google Scholar 

  163. Feng J, Chen X, Guan B, Li C, Qiu J, Shen J (2018) Inhibition of peroxynitrite-induced mitophagy Activation attenuates cerebral ischemia-reperfusion injury. Mol Neurobiol 55(8):6369–6386. https://doi.org/10.1007/s12035-017-0859-x

    Article  CAS  PubMed  Google Scholar 

  164. Pineda-Ramírez N, Alquisiras-Burgos I, Ortiz-Plata A, Ruiz-Tachiquín ME, Espinoza-Rojo M, Aguilera P (2020) Resveratrol activates neuronal autophagy through AMPK in the ischemic brain. Mol Neurobiol 57(2):1055–1069. https://doi.org/10.1007/s12035-019-01803-6

    Article  CAS  PubMed  Google Scholar 

  165. Mondal NK, Behera J, Kelly KE, George AK, Tyagi PK, Tyagi N (2019) Tetrahydrocurcumin epigenetically mitigates mitochondrial dysfunction in brain vasculature during ischemic stroke. Neurochem Int 122:120–138. https://doi.org/10.1016/j.neuint.2018.11.015

    Article  CAS  PubMed  Google Scholar 

  166. Tang Y, Jia C, He J, Zhao Y, Chen H, Wang S (2019) The application and analytical pathway of dexmedetomidine in ischemia/reperfusion injury. J Anal Methods Chem 2019:7158142. https://doi.org/10.1155/2019/7158142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sciarretta S, Hariharan N, Monden Y, Zablocki D, Sadoshima J (2011) Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol 32(3):275–281. https://doi.org/10.1007/s00246-010-9855-x

    Article  PubMed  Google Scholar 

  168. Yu W, Sun Y, Guo S, Lu B (2011) The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet 20(16):3227–3240. https://doi.org/10.1093/hmg/ddr235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191(7):1367–1380. https://doi.org/10.1083/jcb.201007013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496(7445):372–376. https://doi.org/10.1038/nature12043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Makrecka-Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K, Puurand M, Käämbre T, Han WH, de Goede P, O’Brien KA, Turan B, Tuncay E, Olgar Y, Rolo AP, Palmeira CM, Boardman NT, Wüst RCI, Larsen TS (2020) Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf) 228(3):e13430. https://doi.org/10.1111/apha.13430

    Article  CAS  Google Scholar 

  172. Shrum S, Rusch NJ, MacMillan-Crow LA (2019) Specific BK channel activator NS11021 protects rat renal proximal tubular cells from cold storage-induced mitochondrial injury in vitro. Biomolecules 9 (12). https://doi.org/10.3390/biom9120825

  173. Anzell AR, Maizy R, Przyklenk K, Sanderson TH (2018) Mitochondrial quality control and disease: insights into ischemia-reperfusion injury. Mol Neurobiol 55(3):2547–2564. https://doi.org/10.1007/s12035-017-0503-9

    Article  CAS  PubMed  Google Scholar 

  174. Feng J, Chen X, Shen J (2017) Reactive nitrogen species as therapeutic targets for autophagy: implication for ischemic stroke. Expert Opin Ther Targets 21(3):305–317. https://doi.org/10.1080/14728222.2017.1281250

    Article  CAS  PubMed  Google Scholar 

  175. Li S, Lin Q, Shao X, Zhu X, Wu J, Wu B, Zhang M, Zhou W, Zhou Y, Jin H, Zhang Z, Qi C, Shen J, Mou S, Gu L, Ni Z (2019) Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free Radical Biol Med. https://doi.org/10.1016/j.freeradbiomed.2019.12.005

    Article  Google Scholar 

  176. Wu Q, Gao C, Wang H, Zhang X, Li Q, Gu Z, Shi X, Cui Y, Wang T, Chen X, Wang X, Luo C, Tao L (2018) Mdivi-1 alleviates blood-brain barrier disruption and cell death in experimental traumatic brain injury by mitigating autophagy dysfunction and mitophagy activation. Int J Biochem Cell Biol 94:44–55. https://doi.org/10.1016/j.biocel.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  177. Ma M, Lin XH, Liu HH, Zhang R, Chen RX (2020) Suppression of DRP1-mediated mitophagy increases the apoptosis of hepatocellular carcinoma cells in the setting of chemotherapy. Oncol Rep 43(3):1010–1018. https://doi.org/10.3892/or.2020.7476

    Article  CAS  PubMed  Google Scholar 

  178. Jendrach M, Mai S, Pohl S, Vöth M, Bereiter-Hahn J (2008) Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion 8(4):293–304. https://doi.org/10.1016/j.mito.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  179. Liu YT, Sliter DA, Shammas MK, Huang X, Wang C, Calvelli H, D SM, D PN (2021) Mt-Keima detects PINK1-PRKN mitophagy in vivo with greater sensitivity than mito-QC. Autophagy:1–10. https://doi.org/10.1080/15548627.2021.1896924

  180. Li L, Stary CM (2016) Targeting glial mitochondrial function for protection from cerebral ischemia: relevance, mechanisms, and the role of microRNAs. Oxid Med Cell Longev 2016:6032306. https://doi.org/10.1155/2016/6032306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Quintana DD, Garcia JA, Sarkar SN, Jun S, Engler-Chiurazzi EB, Russell AE, Cavendish JZ, Simpkins JW (2019) Hypoxia-reoxygenation of primary astrocytes results in a redistribution of mitochondrial size and mitophagy. Mitochondrion 47:244–255. https://doi.org/10.1016/j.mito.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  182. Hirayama Y, Koizumi S (2018) Astrocytes and ischemic tolerance. Neurosci Res 126:53–59. https://doi.org/10.1016/j.neures.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  183. Koizumi S, Hirayama Y, Morizawa YM (2018) New roles of reactive astrocytes in the brain; an organizer of cerebral ischemia. Neurochem Int 119:107–114. https://doi.org/10.1016/j.neuint.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  184. Sun L, Zhang Y, Liu E, Ma Q, Anatol M, Han H, Yan J (2019) The roles of astrocyte in the brain pathologies following ischemic stroke. Brain Inj 33(6):712–716. https://doi.org/10.1080/02699052.2018.1531311

    Article  PubMed  Google Scholar 

  185. Yellen G (2018) Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol 217(7):2235–2246. https://doi.org/10.1083/jcb.201803152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X, Lo EH (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535(7613):551–555. https://doi.org/10.1038/nature18928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Jangholi E, Sharifi ZN, Hoseinian M, Zarrindast MR, Rahimi HR, Mowla A, Aryan H, Javidi MA, Parsa Y, Ghaffarpasand F, Yadollah-Damavandi S, Arani HZ, Shahi F, Movassaghi S (2020) Verapamil inhibits mitochondria-induced reactive oxygen species and dependent apoptosis pathways in cerebral transient global ischemia/reperfusion. Oxid Med Cell Longev 2020:5872645. https://doi.org/10.1155/2020/5872645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Fukui Y, Nozawa T, Ihori H, Sobajima M, Nakadate T, Matsuki A, Nonomura M, Fujii N, Inoue H, Kinugawa K (2017) Nicorandil attenuates ischemia-reperfusion injury via inhibition of norepinephrine release from cardiac sympathetic nerve terminals. Int Heart J 58(5):787–793. https://doi.org/10.1536/ihj.16-391

    Article  CAS  PubMed  Google Scholar 

  189. Yuan F, Fu H, Sun K, Wu S, Dong T (2017) Effect of dexmedetomidine on cerebral ischemia-reperfusion rats by activating mitochondrial ATP-sensitive potassium channel. Metab Brain Dis 32(2):539–546. https://doi.org/10.1007/s11011-016-9945-4

    Article  CAS  PubMed  Google Scholar 

  190. Wang H, Zheng S, Liu M, Jia C, Wang S, Wang X, Xue S, Guo Y (2016) The effect of propofol on mitochondrial fission during oxygen-glucose deprivation and reperfusion injury in rat hippocampal neurons. PLoS ONE 11(10):e0165052. https://doi.org/10.1371/journal.pone.0165052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lu CJ, Guo YZ, Zhang Y, Yang L, Chang Y, Zhang JW, Jing L, Zhang JZ (2017) Coenzyme Q10 ameliorates cerebral ischemia reperfusion injury in hyperglycemic rats. Pathol Res Pract 213(9):1191–1199. https://doi.org/10.1016/j.prp.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  192. Amani H, Habibey R, Shokri F, Hajmiresmail SJ, Akhavan O, Mashaghi A, Pazoki-Toroudi H (2019) Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci Rep 9(1):6044. https://doi.org/10.1038/s41598-019-42633-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Yang L, Ma YM, Shen XL, Fan YC, Zhang JZ, Li PA, Jing L (2020) The Involvement of mitochondrial biogenesis in selenium reduced hyperglycemia-aggravated cerebral ischemia injury. Neurochem Res 45(8):1888–1901. https://doi.org/10.1007/s11064-020-03055-6

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The manuscript presented here was carried out in cooperation among all authors. Ma and Wu conceived and designed this review; Wu and Gu wrote the paper. All authors commented on and approved this manuscript.

Corresponding author

Correspondence to Zhengliang Ma.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Gu, X. & Ma, Z. Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury. Mol Neurobiol 58, 5253–5271 (2021). https://doi.org/10.1007/s12035-021-02494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02494-8

Keywords

Navigation