Skip to main content

Advertisement

Log in

The Involvement of Cytochrome c Oxidase in Mitochondrial Fusion in Primary Cultures of Neonatal Rat Cardiomyocytes

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cytochrome c oxidase (CCO) is a copper-dependent enzyme of mitochondrial respiratory chain. In pressure overload-induced cardiac hypertrophy, copper level and CCO activity are both depressed, along with disturbance in mitochondrial fusion and fission dynamics. Copper repletion leads to recovery of CCO activity and normalized mitochondrial dynamics. The present study was undertaken to define the link between CCO activity and mitochondrial dynamic changes. Primary cultures of neonatal rat cardiomyocytes were treated with phenylephrine to induce cell hypertrophy. Hypertrophic cardiomyocytes were then treated with copper to reverse hypertrophy. In the hypertrophic cardiomyocytes, CCO activity was depressed and mitochondrial fusion was suppressed. Upon copper repletion, CCO activity was recovered and mitochondrial fusion was reestablished. Depression of CCO activity by siRNA targeting CCO assembly homolog 17 (COX17), a copper chaperone for CCO, led to fragmentation of mitochondria, which was not recoverable by copper supplementation. This study thus demonstrates that copper-dependent CCO is critical for mitochondrial fusion in the regression of cardiomyocyte hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Mitochondrial dynamic changes in hypertrophic cardiomyocytes
Fig. 2: The effect of Cu addition on PE-induced suppression of CCO activity
Fig. 3: Intracellular Cu contents in PE-treated cardiomyocytes and the effect of Cu supplementation
Fig. 4: The effects of COX17 deficiency on CCO activity and the subsequent effect on mitochondrial fragmentation
Fig. 5: Protein levels of MFN1 and DLP1 from COX17 siRNA -treated cells and the effect of Cu

Similar content being viewed by others

References

  1. Iwata, S. (1998). Structure and function of bacterial cytochrome c oxidase. Journal of Biochemistry, 123, 369–375.

    Article  PubMed  CAS  Google Scholar 

  2. Abramson, J., Svensson-Ek, M., Byrne, B., & Iwata, S. (2001). Structure of cytochrome c oxidase: A comparison of the bacterial and mitochondrial enzymes. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1544, 1–9.

    Article  CAS  Google Scholar 

  3. Yoshikawa, S., Shinzawa-Itoh, K., & Tsukihara, T. (2000). X-ray structure and the reaction mechanism of bovine heart cytochrome c oxidase. Journal of Inorganic Biochemistry, 82, 1–7.

    Article  PubMed  CAS  Google Scholar 

  4. Saraste, M. (1990). Structural features of cytochrome oxidase. Quarterly Reviews of Biophysics, 23, 331–366.

    Article  PubMed  CAS  Google Scholar 

  5. Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., et al. (1996). The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science, 272, 1136–1144.

    Article  PubMed  CAS  Google Scholar 

  6. Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., et al. (1995). Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science, 269, 1069–1074.

    Article  PubMed  CAS  Google Scholar 

  7. Glerum, D. M., Shtanko, A., & Tzagoloff, A. (1996). Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. Journal of Biological Chemistry, 271, 14504–14509.

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi, Y., Kako, K., Kashiwabara, S.-I., Takehara, A., Inada, Y., Arai, H., et al. (2002). Mammalian copper chaperone Cox17p has an essential role in activation of cytochrome C oxidase and embryonic development. Molecular and Cellular Biology, 22, 7614–7621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Leary, S. C., Kaufman, B. A., Pellecchia, G., Guercin, G.-H., Mattman, A., Jaksch, M., et al. (2004). Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Human Molecular Genetics, 13, 1839–1848.

    Article  PubMed  CAS  Google Scholar 

  10. Tzagoloff, A., Capitanio, N., Nobrega, M. P., & Gatti, D. (1990). Cytochrome oxidase assembly in yeast requires the product of COX11, a homolog of the P. denitrificans protein encoded by ORF3. The EMBO journal, 9, 2759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Carr, H. S., George, G. N., & Winge, D. R. (2002). Yeast Cox11, a protein essential for cytochrome c oxidase assembly, is a Cu (I)-binding protein. Journal of Biological Chemistry, 277, 31237–31242.

    Article  PubMed  CAS  Google Scholar 

  12. Schulze, M., & Rödel, G. (1988). SCO1, a yeast nuclear gene essential for accumulation of mitochondrial cytochrome c oxidase subunit II. Molecular and General Genetics MGG, 211, 492–498.

    Article  PubMed  CAS  Google Scholar 

  13. Nittis, T., George, G. N., & Winge, D. R. (2001). Yeast Sco1, a protein essential for cytochrome c oxidase function Is a Cu (I)-binding protein. Journal of Biological Chemistry, 276, 42520–42526.

    Article  PubMed  CAS  Google Scholar 

  14. Oswald, C., Krause-Buchholz, U., & Rödel, G. (2009). Knockdown of human COX17 Affects assembly and supramolecular organization of cytochrome c oxidase. Journal of Molecular Biology, 389, 470–479.

    Article  PubMed  CAS  Google Scholar 

  15. Wang, B., Dong, D., & Kang, Y. J. (2013). Copper chaperone for superoxide dismutase-1 transfers copper to mitochondria but does not affect cytochrome c oxidase activity. Experimental Biology and Medicine (Maywood, NJ), 238, 1017–1023.

    Article  CAS  Google Scholar 

  16. Jiang, Y., Reynolds, C., Xiao, C., Feng, W., Zhou, Z., Rodriguez, W., et al. (2007). Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. Journal of Experimental Medicine, 204, 657–666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Nishio, M. L., Ornatsky, O. I., Craig, E. E., & Hood, D. A. (1995). Mitochondrial biogenesis during pressure overload induced cardiac hypertrophy in adult rats. Canadian Journal of Physiology and Pharmacology, 73, 630–637.

    Article  PubMed  CAS  Google Scholar 

  18. Müller-Höcker, J., Johannes, A., Droste, M., Kadenbach, B., Pongratz, D., & Hühner, G. (1986). Fatal mitochondrial cardiomyopathy in Kearns-Sayre syndrome with deficiency of cytochrome-c-oxidase in cardiac and skeletal muscle. Virchows Archiv B, 52, 353–367.

    Article  Google Scholar 

  19. Zeviani, M., Van Dyke, D. H., Servidei, S., Bauserman, S. C., Bonilla, E., Beaumont, E. T., et al. (1986). Myopathy and fatal cardiopathy due to cytochrome c oxidase deficiency. Archives of Neurology, 43, 1198–1202.

    Article  PubMed  CAS  Google Scholar 

  20. Buchwald, A., Till, H., Unterberg, C., Oberschmidt, R., Figulla, H. R., & Wiegand, V. (1990). Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. European Heart Journal, 11, 509–516.

    Article  PubMed  CAS  Google Scholar 

  21. Elsherif, L., Wang, L., Saari, J. T., & Kang, Y. J. (2004). Regression of dietary copper restriction-induced cardiomyopathy by copper repletion in mice. The Journal of nutrition, 134, 855–860.

    Article  PubMed  CAS  Google Scholar 

  22. Zuo, X., Xie, H., Dong, D., Jiang, N., Zhu, H., & Kang, Y. J. (2010). Cytochrome c oxidase is essential for copper-induced regression of cardiomyocyte hypertrophy. Cardiovascular Toxicology, 10, 208–215.

    Article  PubMed  CAS  Google Scholar 

  23. Dallman, P. R. (1967). Cytochrome oxidase repair during treatment of copper deficiency: Relation to mitochondrial turnover. Journal of Clinical Investigation, 46, 1819.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bereiter-Hahn, J. (1990). Behavior of mitochondria in the living cell. International Review of Cytology, 122, 1–63.

    Article  PubMed  CAS  Google Scholar 

  25. Skulachev, V. P. (2001). Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends in Biochemical Sciences, 26, 23–29.

    Article  PubMed  CAS  Google Scholar 

  26. Twig, G., Elorza, A., Molina, A. J. A., Mohamed, H., Wikstrom, J. D., Walzer, G., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO Journal, 27, 433–446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Santel, A., & Fuller, M. T. (2001). Control of mitochondrial morphology by a human mitofusin. Journal of Cell Science, 114, 867–874.

    PubMed  CAS  Google Scholar 

  28. Smirnova, E., Shurland, D.-L., Ryazantsev, S. N., & van der Bliek, A. M. (1998). A human dynamin-related protein controls the distribution of mitochondria. The Journal of Cell Biology, 143, 351–358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hoffmann, P., Richards, D., Heinroth-Hoffmann, I., Mathias, P., Wey, H., & Toraason, M. (1995). Arachidonic acid disrupts calcium dynamics in neonatal rat cardiac myocytes. Cardiovascular Research, 30, 889–898.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, T., Li, R., Lin, C., Sun, M., & Kang, Y. J. (2014). Brief communication: Copper suppression of vascular endothelial growth factor receptor-2 is involved in the regression of cardiomyocyte hypertrophy. Experimental Biology and Medicine, 239, 948–953.

    Article  PubMed  CAS  Google Scholar 

  31. Zhou, Y., Jiang, Y., & Kang, Y. J. (2008). Copper reverses cardiomyocyte hypertrophy through vascular endothelial growth factor-mediated reduction in the cell size. Journal of Molecular and Cellular Cardiology, 45, 106–117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Schaper, J., Froede, R., Hein, S. T., Buck, A., Hashizume, H., Speiser, B., et al. (1991). Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation, 83, 504–514.

    Article  PubMed  CAS  Google Scholar 

  33. Zak, R., Rabinowitz, M., Rajamanickam, C., Merten, S., & Kwiatkowska-Patzer, B. (1980). Mitochondrial proliferation in cardiac hypertrophy. Basic Research in Cardiology, 75, 171–178.

    Article  PubMed  CAS  Google Scholar 

  34. Duvezin-Caubet, S., Jagasia, R., Wagener, J., Hofmann, S., Trifunovic, A., Hansson, A., et al. (2006). Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. Journal of Biological Chemistry, 281, 37972–37979.

    Article  PubMed  CAS  Google Scholar 

  35. Baandrup, U., Florio, R. A., Roters, F., & Olsen, E. G. (1981). Electron microscopic investigation of endomyocardial biopsy samples in hypertrophy and cardiomyopathy. A semiquantitative study in 48 patients. Circulation, 63, 1289–1298.

    Article  PubMed  CAS  Google Scholar 

  36. Pennanen, C., Parra, V., López-Crisosto, C., Morales, P. E., del Campo, A., Gutierrez, T., et al. (2014). Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. Journal of Cell Science, 127, 2659–2671.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Coronado, M., Fajardo, G., Nguyen, K., Zhao, M., Kooiker, K. B., Hu, D.-Q., et al. (2017). Physiologic mitochondrial fragmentation is a normal cardiac adaptation to increased energy demand. Circulation Research. https://doi.org/10.1161/CIRCRESAHA.1117.310725.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Medeiros, D. M., Bagby, D., Ovecka, G., & McCormick, R. (1991). Myofibrillar, mitochondrial and valvular morphological alterations in cardiac hypertrophy among copper-deficient rats. The Journal of Nutrition, 121, 815–824.

    Article  PubMed  CAS  Google Scholar 

  39. Papanicolaou, K. N., Ngoh, G. A., Dabkowski, E. R., O’Connell, K. A., Ribeiro, R. F., Jr., Stanley, W. C., et al. (2011). Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. American Journal of Physiology-Heart and Circulatory Physiology, 302, H167–H179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Cereghetti, G. M., Stangherlin, A., De Brito, O. M., Chang, C. R., Blackstone, C., Bernardi, P., et al. (2008). Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proceedings of the National Academy of Sciences, 105, 15803–15808.

    Article  Google Scholar 

  41. Jhun, B. S., Adaniya, S. M., Mancini, T. J., Cao, J. L., King, M. E., Landi, A. K., et al. (2018). Protein kinase D activation induces mitochondrial fragmentation and dysfunction in cardiomyocytes. The Journal of Physiology. https://doi.org/10.1113/JP275418.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fang, L., Moore, X.-L., Gao, X.-M., Dart, A. M., Lim, Y. L., & Du, X.-J. (2007). Down-regulation of mitofusin-2 expression in cardiac hypertrophy in vitro and in vivo. Life Sciences, 80, 2154–2160.

    Article  PubMed  CAS  Google Scholar 

  43. Chen, L., Gong, Q., Stice, J. P., & Knowlton, A. A. (2009). Mitochondrial OPA1, apoptosis, and heart failure. Cardiovascular Research, 84, 91–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sun, M., Zuo, X., Li, R., Wang, T., & Kang, Y. J. (2014). Vascular endothelial growth factor recovers suppressed cytochrome c oxidase activity by restoring copper availability in hypertrophic cardiomyocytes. Experimental Biology and Medicine, 239, 1671–1677.

    Article  PubMed  CAS  Google Scholar 

  45. Zuo, X., Dong, D., Sun, M., Xie, H., & Kang, Y. J. (2013). Homocysteine restricts copper availability leading to suppression of cytochrome C oxidase activity in phenylephrine-treated cardiomyocytes. PLoS ONE, 8, e67549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Radford, N. B., Wan, B., Richman, A., Szczepaniak, L. S., Li, J.-L., Li, K., et al. (2002). Cardiac dysfunction in mice lacking cytochrome-c oxidase subunit VIaH. American Journal of Physiology-Heart and Circulatory Physiology, 282, H726–H733.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank Lin Bai, Suzheng Fan for providing technical assistance for mitochondrial imaging and AAS, respectively. This study was supported by National Science Foundation of China (Grant Number 81230004) and Sichuan University West China Hospital.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design, analysis of the data, interpretation of the results, and review of the manuscript; WY, RL, and XRF carried out the experiments; YJK and WY wrote the manuscript.

Corresponding author

Correspondence to Y. James Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, W., Li, R., Feng, X. et al. The Involvement of Cytochrome c Oxidase in Mitochondrial Fusion in Primary Cultures of Neonatal Rat Cardiomyocytes. Cardiovasc Toxicol 18, 365–373 (2018). https://doi.org/10.1007/s12012-018-9447-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-018-9447-1

Keywords

Navigation