Skip to main content

Advertisement

Log in

Is Autophagy in Response to Ischemia and Reperfusion Protective or Detrimental for the Heart?

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Autophagy is a catabolic process that degrades long-lived proteins and damaged organelles by sequestering them into double membrane structures termed “autophagosomes” and fusing them with lysosomes. Autophagy is active in the heart at baseline and further stimulated under stress conditions including starvation, ischemia/reperfusion, and heart failure. It plays an adaptive role in the heart at baseline, thereby maintaining cardiac structure and function and inhibiting age-related cardiac abnormalities. Autophagy is activated by ischemia and nutrient starvation in the heart through Sirt1-FoxO- and adenosine monophosphate (AMP)-activated protein kinase (AMPK)-dependent mechanisms, respectively. Activation of autophagy during ischemia is essential for cell survival and maintenance of cardiac function. Autophagy is strongly activated in the heart during reperfusion after ischemia. Activation of autophagy during reperfusion could be either protective or detrimental, depending on the experimental model. However, strong induction of autophagy accompanied by robust upregulation of Beclin1 could cause autophagic cell death, thereby proving to be detrimental. This review provides an overview regarding both protective and detrimental functions of autophagy in the heart and discusses possible applications of current knowledge to the treatment of heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701

    Article  PubMed  CAS  Google Scholar 

  2. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581

    Article  PubMed  CAS  Google Scholar 

  3. Decker RS, Wildenthal K (1980) Lysosomal alterations in hypoxic and reoxygenated hearts: I. Ultrastructural and cytochemical changes. Am J Pathol 98:425–444

    PubMed  CAS  Google Scholar 

  4. Gottlieb RA, Carreira RS (2010) Autophagy in health and disease: 5. Mitophagy as a way of life. Am J Physiol Cell Physiol 299:C203–C210

    Article  PubMed  CAS  Google Scholar 

  5. Gottlieb RA, Mentzer RM (2010) Autophagy during cardiac stress: joys and frustrations of autophagy. Annu Rev Physiol 72:45–59

    Article  PubMed  CAS  Google Scholar 

  6. Gurusamy N, Lekli I, Gorbunov NV, Gherghiceanu M, Popescu LM, Das DK (2009) Cardioprotection by adaptation to ischaemia augments autophagy in association with BAG-1 protein. J Cell Mol Med 13:373–387

    Article  PubMed  CAS  Google Scholar 

  7. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281:29776–29787

    Article  PubMed  CAS  Google Scholar 

  8. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J (2010) Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 107(12):1470–1482

    Article  PubMed  CAS  Google Scholar 

  9. Hariharan N, Zhai P, Sadoshima J (2010) Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal (in press)

  10. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  PubMed  CAS  Google Scholar 

  11. Huang C, Yitzhaki S, Perry CN, Liu W, Giricz Z, Mentzer RM Jr, Gottlieb RA (2010) Autophagy induced by ischemic preconditioning is essential for cardioprotection. J Cardiovasc Transl Res 3:365–373

    Article  PubMed  CAS  Google Scholar 

  12. Kanamori H, Takemura G, Maruyama R, Goto K, Tsujimoto A, Ogino A, Li L, Kawamura I, Takeyama T, Kawaguchi T, Nagashima K, Fujiwara T, Fujiwara H, Seishima M, Minatoguchi S (2009) Functional significance and morphological characterization of starvation-induced autophagy in the adult heart. Am J Pathol 174:1705–1714

    Article  PubMed  CAS  Google Scholar 

  13. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  PubMed  CAS  Google Scholar 

  14. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  PubMed  CAS  Google Scholar 

  15. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  PubMed  CAS  Google Scholar 

  16. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922

    Article  PubMed  CAS  Google Scholar 

  17. Matsui Y, Kyoi S, Takagi H, Hsu CP, Hariharan N, Ago T, Vatner SF, Sadoshima J (2008) Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 4:409–415

    PubMed  CAS  Google Scholar 

  18. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–396

    Article  PubMed  CAS  Google Scholar 

  19. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  PubMed  CAS  Google Scholar 

  20. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619–624

    Article  PubMed  CAS  Google Scholar 

  21. Nishida K, Yamaguchi O, Otsu K (2008) Crosstalk between autophagy and apoptosis in heart disease. Circ Res 103:343–351

    Article  PubMed  CAS  Google Scholar 

  22. Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K (2009) The role of autophagy in the heart. Cell Death Differ 16:31–38

    Article  PubMed  CAS  Google Scholar 

  23. Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461:654–658

    Article  PubMed  CAS  Google Scholar 

  24. Porrello ER, D’Amore A, Curl CL, Allen AM, Harrap SB, Thomas WG, Delbridge LM (2009) Angiotensin II type 2 receptor antagonizes angiotensin II type 1 receptor-mediated cardiomyocyte autophagy. Hypertension 53:1032–1040

    Article  PubMed  CAS  Google Scholar 

  25. Saftig P, Tanaka Y, Lullmann-Rauch R, von Figura K (2001) Disease model: LAMP-2 enlightens Danon disease. Trends Mol Med 7:37–39

    Article  PubMed  CAS  Google Scholar 

  26. Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria, and the regulation of autophagy. Trends Cell Biol 17:422–427

    Article  PubMed  CAS  Google Scholar 

  27. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  PubMed  CAS  Google Scholar 

  28. Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J (2007) AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3:405–407

    PubMed  CAS  Google Scholar 

  29. Takemura G, Kanamori H, Goto K, Maruyama R, Tsujimoto A, Fujiwara H, Seishima M, Minatoguchi S (2009) Autophagy maintains cardiac function in the starved adult. Autophagy 5:1034–1036

    Article  PubMed  Google Scholar 

  30. Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, Nishida K, Shimizu T, Hori M, Komuro I, Shirasawa T, Mizushima N, Otsu K (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6(5):600–606

    Article  CAS  Google Scholar 

  31. Valentim L, Laurence KM, Townsend PA, Carroll CJ, Soond S, Scarabelli TM, Knight RA, Latchman DS, Stephanou A (2006) Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol 40:846–852

    Article  PubMed  CAS  Google Scholar 

  32. Wang ZV, Rothermel BA, Hill JA (2010) Autophagy in hypertensive heart disease. J Biol Chem 285:8509–8514

    Article  PubMed  CAS  Google Scholar 

  33. Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y, Sadoshima J, Vatner SF (2005) Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A 102:13807–13812

    Article  PubMed  CAS  Google Scholar 

  34. Zhai P, Galeotti J, Sadoshima J (2010) Inhibition of glycogen synthase kinase 3 protects against ischemia-reperfusion injury but exacerbates prolonged ischemic injury through modulating autophagy and mammalian target of rapamycin. Circ Res 105:e11

    Google Scholar 

  35. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903

    Article  PubMed  CAS  Google Scholar 

  36. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by U.S. Public Health Service Grants HL59139, HL67724, HL69020, HL91469, HL102738, and AG27211, and by the Foundation of Leducq Transatlantic Network of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Sadoshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sciarretta, S., Hariharan, N., Monden, Y. et al. Is Autophagy in Response to Ischemia and Reperfusion Protective or Detrimental for the Heart?. Pediatr Cardiol 32, 275–281 (2011). https://doi.org/10.1007/s00246-010-9855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-010-9855-x

Keywords

Navigation