Skip to main content

Advertisement

Log in

Hyperglycemia Alters Mitochondrial Fission and Fusion Proteins in Mice Subjected to Cerebral Ischemia and Reperfusion

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Preischemic hyperglycemia exacerbates brain damage caused by cerebral ischemia. In the present experiment, we studied the effects of preischemic hyperglycemia on protein markers that are related to mitochondrial fission and fusion, mitochondrial biogenesis, and autophagy in mice subjected to 30-min transient focal ischemia. The fission proteins dynamin-related protein 1 (Drp1) and fission 1 (Fis1), fusion proteins optic atrophy 1 (Opa1) and mitofusin 2 (Mfn2), mitochondrial biogenesis regulators nuclear respiratory factor 1 (NRF1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and autophagy marker beclin 1 and microtubule-associated protein light chain 3 (LC3) were analyzed in control, 30 min middle cerebral artery occlusion (MCAO) plus 6-, 24-, and 72 h of reperfusion in normo- and hyperglycemic conditions. Cerebral ischemia increased the levels of Drp1 and decreased Fis1 after reperfusion. Preischemic hyperglycemia further augmented the increase of Drp1 and induced elevation in Fis1. Ischemia inhibited the levels of Opa1 and Mfn2 and hyperglycemia further decreased the level of Opa1. Further, NRF1 increased after reperfusion in both normo- and hyperglycemic animals. However, such increase was caused by reperfusion rather than glucose level. Finally, ischemia increased beclin 1 level at 6 and 24 h of reperfusion and hyperglycemia further increased the beclin 1 level and caused LC3-II increase as well. Hyperglycemia enhances the ischemia-induced mitochondrial dynamic imbalance towards fission that may favor mitochondrial fragmentation and subsequent damage. Hyperglycemia elevated autophagy markers may represent an adapting reaction to the severe damage incurred in hyperglycemic animals or a third pathway of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CCA:

Common carotid artery

Drp1:

Dynamin-related protein 1

Mfn2:

Mitofusin 2

ICA:

Internal carotid artery

LC3:

Microtubule-associated protein light chain 3

MCA:

Middle cerebral artery

MCAO:

Middle cerebral artery occlusion

NRF1:

Nuclear respiratory factor 1

Opa1:

Optic atrophy 1

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

Tfam:

Transcription factor A

References

  1. Li PA, Shamloo M, Smith ML, Katsura K, Siesjo BK. The influence of plasma glucose concentrations on ischemic brain damage is a threshold function. Neurosci Lett. 1994;177:63–5.

    Article  PubMed  CAS  Google Scholar 

  2. Li PA, Shamloo M, Katsura K, Smith ML, Siesjo BK. Critical values for plasma glucose in aggravating ischaemic brain damage: correlation to extracellular pH. Neurobiol Dis. 1995;2:97–108.

    Article  PubMed  CAS  Google Scholar 

  3. Li PA, Gisselsson L, Keuker J, Vogel J, Smith ML, Kuschinsky W, Siesjo BK. Hyperglycemia-exaggerated ischemic brain damage following 30 min of middle cerebral artery occlusion is not due to capillary obstruction. Brain Res. 1998;804:36–44.

    Article  PubMed  CAS  Google Scholar 

  4. Li PA, Siesjo BK. Role of hyperglycaemia-related acidosis in ischaemic brain damage. Acta Physiol Scand. 1997;161:567–80.

    Article  PubMed  CAS  Google Scholar 

  5. Gisselsson L, Smith ML, Siesjo BK. Hyperglycemia and focal brain ischemia. J Cereb Blood Flow Metab. 1999;19:288–97.

    Article  PubMed  CAS  Google Scholar 

  6. Martini SR, Kent TA. Hyperglycemia in acute ischemic stroke: a vascular perspective. J Cereb Blood Flow Metab. 2007;27:435–51.

    Article  PubMed  CAS  Google Scholar 

  7. Xing Y, Jiang X, Yang Y, Xi G. Hemorrhagic transformation induced by acute hyperglycemia in a rat model of transient focal ischemia. Acta Neurochir Suppl. 2011;111:49–54.

    Article  PubMed  Google Scholar 

  8. Abbott RD, Donahue RP, MacMahon SW, Reed DM, Yano K. Diabetes and the risk of stroke. The Honolulu Heart Program. JAMA. 1987;257:949–52.

    Article  PubMed  CAS  Google Scholar 

  9. Rodriguez BL, Abbott RD, Fujimoto W, Waitzfelder B, Chen R, Masaki K, Schatz I, Petrovitch H, Ross W, Yano K, Blanchette PL, Curb JD. The American Diabetes Association and World Health Organization classifications for diabetes: their impact on diabetes prevalence and total and cardiovascular disease mortality in elderly Japanese-American men. Diabetes Care. 2002;25:951–5.

    Article  PubMed  Google Scholar 

  10. Bruno A, Williams LS, Kent TA. How important is hyperglycemia during acute brain infarction? Neurologist. 2004;10:195–200.

    Article  PubMed  Google Scholar 

  11. Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke. 2001;32:2426–32.

    Article  PubMed  CAS  Google Scholar 

  12. Els T, Klisch J, Orszagh M, Hetzel A, Schulte-Monting J, Schumacher M, Lucking CH. Hyperglycemia in patients with focal cerebral ischemia after intravenous thrombolysis: influence on clinical outcome and infarct size. Cerebrovasc Dis. 2002;13:89–94.

    Article  PubMed  CAS  Google Scholar 

  13. Tuomilehto J, Rastenyte D, Jousilahti P, Sarti C, Vartiainen E. Diabetes mellitus as a risk factor for death from stroke. Prospective study of the middle-aged Finnish population. Stroke. 1996;27:210–5.

    Article  PubMed  CAS  Google Scholar 

  14. Ding C, He Q, Li PA. Activation of cell death pathway after a brief period of global ischemia in diabetic and non-diabetic animals. Exp Neurol. 2004;188:421–9.

    Article  PubMed  CAS  Google Scholar 

  15. Li PA, Rasquinha I, He QP, Siesjö BK, Csiszár K, Boyd CD, MacManus JP. Hyperglycemia enhances DNA fragmentation after transient cerebral ischemia. J Cereb Blood Flow Metab. 2001;21:568–76.

    Article  PubMed  CAS  Google Scholar 

  16. Muranyi M, Fujioka M, He Q, Han A, Yong G, Csiszar K, Li PA. Diabetes activates cell death pathway after transient focal cerebral ischemia. Diabetes. 2003;52:481–6.

    Article  PubMed  CAS  Google Scholar 

  17. Muranyi M, Ding C, He Q, Lin Y, Li PA. Streptozotocin-induced diabetes causes astrocyte death after ischemia and reperfusion injury. Diabetes. 2006;55:349–55.

    Article  PubMed  CAS  Google Scholar 

  18. Keep RF, Andjelkovic AV, Stamatovic SM, Shakui P, Ennis SR. Ischemia-induced endothelial cell dysfunction. Acta Neurochir Suppl. 2005;95:399–402.

    Article  PubMed  CAS  Google Scholar 

  19. Yang X, Borg LA, Eriksson UJ. Altered mitochondrial morphology of rat embryos in diabetic pregnancy. Anat Rec. 1995;241:255–67.

    Article  PubMed  CAS  Google Scholar 

  20. Chen H, Chan DC. Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet. 2009;18:pR169–76.

    Article  Google Scholar 

  21. Van Bergen NJ, Crowston JG, Kearns LS, Staffieri SE, Hewitt AW, Cohn AC, Mackey DA, Trounce IA. Mitochondrial oxidative phosphorylation compensation may preserve vision in patients with Opa1-linked autosomal dominant optic atrophy. PLoS One. 2010;6:e21347.

    Article  Google Scholar 

  22. Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V, Schröder JM, Vance JM. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat Genet. 2004;36:449–51.

    Article  PubMed  Google Scholar 

  23. Parone PA, Da Cruz S, Tondera D, Mattenberger Y, James DI, Maechler P, Barja F, Martinou JC. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS One. 2008;3:e3257.

    Article  PubMed  Google Scholar 

  24. Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 2005;280:26185–92.

    Article  PubMed  CAS  Google Scholar 

  25. Jahani-Asl A, Cheung EC, Neuspiel M, MacLaurin JG, Fortin A, Park DS, McBride HM, Slack RS. Mitofusin 2 protects cerebellar granule neurons against injury-induced cell death. J Biol Chem. 2007;282:23788–98.

    Article  PubMed  CAS  Google Scholar 

  26. James DI, Parone PA, Mattenberger Y, Martinou JC. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem. 2003;278:36373–9.

    Article  PubMed  CAS  Google Scholar 

  27. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27:433–46.

    Article  PubMed  CAS  Google Scholar 

  28. Manczak M, Calkins MJ, Reddy PH. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet. 2011;20:2495–509.

    Article  PubMed  CAS  Google Scholar 

  29. Gomes LC, Scorrano L. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta. 2008;1777:860–6.

    Article  PubMed  CAS  Google Scholar 

  30. Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA, Zhu X, Perry G. Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy. 2007;3:614–5.

    PubMed  CAS  Google Scholar 

  31. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986;17:472–6.

    Article  PubMed  CAS  Google Scholar 

  32. Zhao H, Yenari MA, Cheng D, Barreto-Chang OL, Sapolsky RM, Steinberg GK. Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat. J Cereb Blood Flow Metab. 2004;24:681–92.

    Article  PubMed  CAS  Google Scholar 

  33. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci. 2004;117:2805–12.

    Article  PubMed  CAS  Google Scholar 

  34. Vincent AM, Edwards JL, McLean LL, Hong Y, Cerri F, Lopez I, Quattrini A, Feldman EL. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol. 2010;120:477–89.

    Article  PubMed  CAS  Google Scholar 

  35. Makino A, Scott BT, Dillmann WH. Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia. 2010;53:1783–94.

    Article  PubMed  CAS  Google Scholar 

  36. Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A. 2006;103:2653–8.

    Article  PubMed  CAS  Google Scholar 

  37. Yu T, Sheu SS, Robotham JL, Yoon Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res. 2008;79:341–51.

    Article  PubMed  CAS  Google Scholar 

  38. Yu-Wai-Man P, Trenell MI, Hollingsworth KG, Griffiths PG, Chinnery PF. OPA1 mutations impair mitochondrial function in both pure and complicated dominant optic atrophy. Brain. 2011;134:e164.

    Article  PubMed  Google Scholar 

  39. Solenski NJ, diPierro CG, Trimmer PA, Kwan AL, Helm GA. Ultrastructural changes of neuronal mitochondria after transient and permanent cerebral ischemia. Stroke. 2002;33:816–24.

    Article  PubMed  Google Scholar 

  40. Leinninger GM, Backus C, Sastry AM, Yi YB, Wang CW, Feldman EL. Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiol Dis. 2006;23:11–22.

    Article  PubMed  CAS  Google Scholar 

  41. Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP. Mitochondria as key components of the stress response. Trends Endocrinol Metab. 2007;18:190–8.

    Article  PubMed  CAS  Google Scholar 

  42. Yin W, Signore AP, Iwai M, Cao G, Gao Y, Chen J. Rapidly increased neuronal mitochondrial biogenesis after hypoxic–ischemic brain injury. Stroke. 2008;39:3057–63.

    Article  PubMed  Google Scholar 

  43. Gutsaeva DR, Carraway MS, Suliman HB, Demchenko IT, Shitara H, Yonekawa H, Piantadosi CA. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. J Neurosci. 2008;28:2015–24.

    Article  PubMed  CAS  Google Scholar 

  44. Kundu M, Thompson CB. Autophagy: basic principles and relevance to disease. Ann Rev Pathol. 2008;3:427–55.

    Article  CAS  Google Scholar 

  45. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75.

    Article  PubMed  CAS  Google Scholar 

  46. Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis. 2008;29:132–41.

    Article  PubMed  CAS  Google Scholar 

  47. Liu C, Gao Y, Barrett J, Hu B. Autophagy and protein aggregation after brain ischemia. J Neurochem. 2010;115:68–78.

    Article  PubMed  CAS  Google Scholar 

  48. Rami A. Review: autophagy in neurodegeneration: firefighter and/or incendiarist? Neuropathol Appl Neurobiol. 2009;35:449–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from the National Institute of Health to PAL (7R01DK075476). The BRITE is partially funded by the Golden Leaf Foundation.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Andy Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, S., Anderson, L., Farmer, S. et al. Hyperglycemia Alters Mitochondrial Fission and Fusion Proteins in Mice Subjected to Cerebral Ischemia and Reperfusion. Transl. Stroke Res. 3, 296–304 (2012). https://doi.org/10.1007/s12975-012-0158-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0158-9

Keywords

Navigation