Skip to main content

Advertisement

Log in

Bmf is upregulated by PS-341-mediated cell death of glioma cells through JNK phosphorylation

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Malignant glioma is resistant to the induction of apoptosis, resulting in a subsequent failure of chemotherapy in clinical treatment strategies. Downregulation of bcl-2 and bcl-xl expression in glioblastoma cells can induce apoptosis. BH3-only proteins, which include Bmf, are essential initiators of stress-induced cell death and apoptosis. Whether PS-341 regulates expression of BH3-only proteins in glioblastoma cells during the procedure of apoptosis is unclear. This study was designed to investigate the effects of PS-341 on glioma cell death and its possible signaling pathway. Our results demonstrate that Bmf is upregulated by PS-341 in A172 and T98G cells, and Bmf has a crucial role in PS-341-mediated cell death. In addition, we found that expression of Bmf is regulated by JNK phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pagano M, Benmaamar R (2003) When protein destruction runs amok, malignancy is on the loose. Cancer Cell 4:251–256

    Article  CAS  PubMed  Google Scholar 

  2. Almond JB, Cohen GM (2002) The proteasome: a novel target for cancer chemotherapy. Leukemia 16:433–443

    Article  CAS  PubMed  Google Scholar 

  3. Adams J (2002) Proteasome inhibitors as new anticancer drugs. Curr Opin Oncol 14:628–634

    Article  CAS  PubMed  Google Scholar 

  4. Adams J, Palombella VJ, Elliott PJ (2000) Proteasome inhibition: a new strategy in cancer treatment. Invest New Drugs 18:109–121

    Article  CAS  PubMed  Google Scholar 

  5. Cusack JC Jr, Liu R, Houston M et al (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 61:3535–3540

    CAS  PubMed  Google Scholar 

  6. Adams J, Palombella VJ, Sausville EA et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    CAS  PubMed  Google Scholar 

  7. Ling YH, Liebes L, Jiang JD et al (2003) Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin Cancer Res 9:1145–1154

    CAS  PubMed  Google Scholar 

  8. Yeung BH, Huang DC, Sinicrope FA (2006) PS-341 (bortezomib) induces lysosomal cathepsin B release and a caspase-2-dependent mitochondrial permeabilization and apoptosis in human pancreatic cancer cells. J Biol Chem 281:11923–11932

    Article  CAS  PubMed  Google Scholar 

  9. Nawrocki ST, Bruns CJ, Harbison MT et al (2002) Effects of the proteasome inhibitor PS-341 on apoptosis and angiogenesis in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther 1:1243–1253

    CAS  PubMed  Google Scholar 

  10. Yin D, Zhou H, Kumagai T et al (2005) Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene 24:344–354

    Article  CAS  PubMed  Google Scholar 

  11. An J, Sun Y, Fisher M et al (2004) Maximal apoptosis of renal cell carcinoma by the proteasome inhibitor bortezomib is nuclear factor-kappaB dependent. Mol Cancer Ther 3:727–736

    CAS  PubMed  Google Scholar 

  12. Fahy BN, Schlieman MG, Mortenson MM et al (2005) Targeting BCL-2 overexpression in various human malignancies through NF-kappaB inhibition by the proteasome inhibitor bortezomib. Cancer Chemother Pharmacol 56:46–54

    Article  CAS  PubMed  Google Scholar 

  13. Matta H, Chaudhary PM (2005) The proteasome inhibitor bortezomib (PS-341) inhibits growth and induces apoptosis in primary effusion lymphoma cells. Cancer Biol Ther 4:77–82

    Article  CAS  PubMed  Google Scholar 

  14. Colado E, Alvarez-Fernández S, Maiso P et al (2008) The effect of the proteasome inhibitor bortezomib on acute myeloid leukemia cells and drug resistance associated with the CD34+ immature phenotype. Haematologica 93:57–66

    Article  CAS  PubMed  Google Scholar 

  15. Williams SA, McConkey DJ (2003) The proteasome inhibitor bortezomib stabilizes a novel active form of p53 in human LNCaP-Pro5 prostate cancer cells. Cancer Res 63:7338–7344

    CAS  PubMed  Google Scholar 

  16. Breitschopf K, Zeiher AM, Dimmeler S et al (2000) Ubiquitin-mediated degradation of the proapoptotic active form of bid. A functional consequence on apoptosis induction. J Biol Chem 275:21648–21652

    Article  CAS  PubMed  Google Scholar 

  17. Li B, Dou QP (2000) Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci USA 97:3850–3855

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y, Ikezoe T, Saito T et al (2004) Proteasome inhibitor PS-341 induces growth arrest and apoptosis of non-small cell lung cancer cells via the JNK/c-Jun/AP-1 signaling. Cancer Sci 95:176–180

    Article  CAS  PubMed  Google Scholar 

  19. Hideshima T, Mitsiades C, Akiyama M et al (2003) Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 101:1530–1534

    Article  CAS  PubMed  Google Scholar 

  20. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607

    Article  CAS  PubMed  Google Scholar 

  21. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  CAS  PubMed  Google Scholar 

  22. Huang DC, Strasser A (2000) BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103:839–842

    Article  CAS  PubMed  Google Scholar 

  23. Adams JM (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev 17:2481–2495

    Article  CAS  PubMed  Google Scholar 

  24. Willis SN, Fletcher JI, Kaufmann T et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859

    Article  CAS  PubMed  Google Scholar 

  25. Chen L, Willis SN, Wei A et al (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    Article  CAS  PubMed  Google Scholar 

  26. Krajewski S, Krajewska M, Ehrmann J et al (1997) Immunohistochemical analysis of Bcl-2, Bcl-X, Mcl-1, and Bax in tumors of central and peripheral nervous system origin. Am J Pathol 150:805–814

    CAS  PubMed  Google Scholar 

  27. Jiang Z, Zheng X, Rich KM (2003) Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death. J Neurochem 84:273–281

    Article  CAS  PubMed  Google Scholar 

  28. Tan TT, Degenhardt K, Nelson DA et al (2005) Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 7:227–238

    Article  CAS  PubMed  Google Scholar 

  29. Pigneux A, Mahon FX, Moreau-Gaudry F et al (2007) Proteasome inhibition specifically sensitizes leukemic cells to anthracyclin-induced apoptosis through the accumulation of Bim and Bax pro-apoptotic proteins. Cancer Biol Ther 6:603–611

    CAS  PubMed  Google Scholar 

  30. Fernández Y, Verhaegen M, Miller TP et al (2005) Differential regulation of noxa in normal melanocytes and melanoma cells by proteasome inhibition: therapeutic implications. Cancer Res 65:6294–6304

    Article  PubMed  Google Scholar 

  31. Zhu H, Zhang L, Dong F et al (2005) Bik/NBK accumulation correlates with apoptosis-induction by bortezomib (PS-341, Velcade) and other proteasome inhibitors. Oncogene 24:4993–4999

    Article  CAS  PubMed  Google Scholar 

  32. Bross PF, Kane R, Farrell AT et al (2004) Approval summary for bortezomib for injection in the treatment of multiple myeloma. Clin Cancer Res 15:3954–3964

    Article  Google Scholar 

  33. Fennell DA, Chacko A, Mutti L (2008) BCL-2 family regulation by the 20S proteasome inhibitor bortezomib. Oncogene 27:1189–1197

    Article  CAS  PubMed  Google Scholar 

  34. Puthalakath H, Villunger A, O’Reilly LA et al (2001) Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 293:1829–1832

    Article  CAS  PubMed  Google Scholar 

  35. Lei K, Davis RJ (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci 100:2432–2437

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Adachi M, Kawamura R et al (2006) Bmf is a possible mediator in histone deacetylase inhibitors FK228 and CBHA-induced apoptosis. Cell Death Differ 13:129–140

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Xinghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tianhu, Z., Shiguang, Z. & Xinghan, L. Bmf is upregulated by PS-341-mediated cell death of glioma cells through JNK phosphorylation. Mol Biol Rep 37, 1211–1219 (2010). https://doi.org/10.1007/s11033-009-9491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9491-9

Keywords

Navigation