Skip to main content

Advertisement

Log in

Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the brain, vascular endothelial cells conserve blood viscosity, control blood flow, and form the interface between central nervous system and circulating blood. Clinical outcome after aneurysmal subarachnoid hemorrhage is linked to early brain injury, cerebral vasospasm, and other causes of delayed cerebral ischemia. The cerebral vasculature remains a unique target for therapies since it becomes rapidly disrupted after subarachnoid hemorrhage, and damage to the blood vessels continues into the delayed injury phase. The current failure of therapies to improve clinical outcome warrants a re-evaluation of current therapeutic approaches. The mechanisms of endothelial cell injury and blood–brain barrier breakdown are critical to the pathway of cerebral injury, and an improved understanding of these mechanisms may lead to novel therapeutic targets. This review provides an update on the current understanding of endothelial cell injury following aneurysmal subarachnoid hemorrhage, including blood–brain barrier dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Reference

  1. Fleegler EW, Lee LK, Monuteaux MC, Hemenway D, Mannix R (2013) Firearm legislation and firearm-related fatalities in the United States. JAMA Intern Med 173:732–740. https://doi.org/10.1001/jamainternmed.2013.1286

    Article  PubMed  Google Scholar 

  2. Rincon F, Rossenwasser RH, Dumont A (2013) The epidemiology of admissions of nontraumatic subarachnoid hemorrhage in the United States. Neurosurgery 73:217–222. https://doi.org/10.1227/01.neu.0000430290.93304.33

    Article  PubMed  Google Scholar 

  3. Allen GS, Ahn HS, Preziosi TJ, Battye R, Boone SC, Chou SN, Kelly DL, Weir BK et al (1983a) Cerebral arterial spasm—a controlled trial of nimodipine in patients with subarachnoid hemorrhage. N Engl J Med 308:619–624. https://doi.org/10.1056/NEJM198303173081103

    Article  CAS  PubMed  Google Scholar 

  4. Diringer MN, Bleck TP, Hemphill JC, Menon D, Shutter L, Vespa P, Bruder N, Connolly ES et al (2011) Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s multidisciplinary consensus conference. Neurocrit Care. https://doi.org/10.1007/s12028-011-9605-9

  5. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I et al (2011) Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 10:618–625. https://doi.org/10.1016/S1474-4422(11)70108-9

    Article  CAS  PubMed  Google Scholar 

  6. Blackburn SL, Kumar PT, McBride D, Zeineddine HA, Leclerc J, Choi HA, Dash PK, Grotta J et al (2018) Unique contribution of haptoglobin and haptoglobin genotype in aneurysmal subarachnoid hemorrhage. Front Physiol 9:592. https://doi.org/10.3389/fphys.2018.00592

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rowland MJ, Hadjipavlou G, Kelly M, Westbrook J, Pattinson KTS (2012) Delayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm. Br J Anaesth. https://doi.org/10.1093/bja/aes264

  8. Vergouwen MDI, Vermeulen M, Coert BA, Stroes ESG, Roos YBWEM (2008) Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia. J Cereb Blood Flow Metab. https://doi.org/10.1038/jcbfm.2008.74

  9. Woitzik J, Dreier JP, Hecht N, Fiss I, Sandow N, Major S, Winkler M, Dahlem YA et al (2012) Delayed cerebral ischemia and spreading depolarization in absence of angiographic vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 32:203–212. https://doi.org/10.1038/jcbfm.2011.169

    Article  PubMed  Google Scholar 

  10. Tettenborn D, Dycka J (1990) Prevention and treatment of delayed ischemic dysfunction in patients with aneurysmal subarachnoid hemorrhage. Stroke

  11. Haley EC, Kassell NF, Alves WM, Weir BK, Hansen CA (1995) Phase II trial of tirilazad in aneurysmal subarachnoid hemorrhage. A report of the Cooperative Aneurysm Study. J Neurosurg 82:786–790. https://doi.org/10.3171/jns.1995.82.5.0786

    Article  PubMed  Google Scholar 

  12. Siironen J, Juvela S, Varis J, Porras M, Poussa K, Ilveskero S, Hernesniemi J, Lassila R (2003) No effect of enoxaparin on outcome of aneurysmal subarachnoid hemorrhage: a randomized, double-blind, placebo-controlled clinical trial. J Neurosurg 99:953–959. https://doi.org/10.3171/jns.2003.99.6.0953

    Article  CAS  PubMed  Google Scholar 

  13. van den Bergh WM (2006) Randomized controlled trial of acetylsalicylic acid in aneurysmal subarachnoid hemorrhage: the MASH study. Stroke 37:2326–2330. https://doi.org/10.1161/01.STR.0000236841.16055.0f

    Article  CAS  PubMed  Google Scholar 

  14. Gomis P, Graftieaux JP, Sercombe R, Hettler D, Scherpereel B, Rousseaux P (2010) Randomized, double-blind, placebo-controlled, pilot trial of high-dose methylprednisolone in aneurysmal subarachnoid hemorrhage. J Neurosurg 112:681–688. https://doi.org/10.3171/2009.4.JNS081377

    Article  CAS  PubMed  Google Scholar 

  15. Kirkpatrick PJ, Turner CL, Smith C, Hutchinson PJ, Murray GD (2014) Simvastatin in aneurysmal subarachnoid haemorrhage (STASH): a multicentre randomised phase 3 trial. Lancet Neurol 13:666–675. https://doi.org/10.1016/S1474-4422(14)70084-5

    Article  CAS  PubMed  Google Scholar 

  16. Dreier JP, Sakowitz OW, Harder A, Zimmer C, Dirnagl U, Valdueza JM, Unterberg AW (2002) Focal laminar cortical MR signal abnormalities after subarachnoid hemorrhage. Ann Neurol 52:825–829. https://doi.org/10.1002/ana.10383

    Article  PubMed  Google Scholar 

  17. Petruk KC, West M, Mohr G, Weir BK, Benoit BG, Gentili F, Disney LB, Khan MI et al (1988) Nimodipine treatment in poor-grade aneurysm patients: results of a multicenter double-blind placebo-controlled trial. J Neurosurg 68:505–517. https://doi.org/10.3171/jns.1988.68.4.0505

    Article  CAS  PubMed  Google Scholar 

  18. Carmeliet P (2003) Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet. https://doi.org/10.1038/nrg1158

  19. Wang Y, Wang N, Cai B, Wang GY, Li J, Piao XX (2015) In vitro model of the blood–brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells. Neural Regen Res 10:2011–2017. https://doi.org/10.4103/1673-5374.172320

    Article  PubMed Central  PubMed  Google Scholar 

  20. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. https://doi.org/10.1038/nrn1824

  21. Engelhardt B (2003) Development of the blood–brain barrier. Cell Tissue Res. https://doi.org/10.1007/s00441-003-0751-z

  22. Engelhardt B, Liebner S (2014) Novel insights into the development and maintenance of the blood–brain barrier. Cell Tissue Res. https://doi.org/10.1007/s00441-014-1811-2

  23. Obermeier B, Daneman R, Ransohoff RM (2013a) Development, maintenance and disruption of the blood–brain barrier. Nat Med. https://doi.org/10.1038/nm.3407

  24. Hawkins BT (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185. https://doi.org/10.1124/pr.57.2.4

    Article  CAS  PubMed  Google Scholar 

  25. Sandoo A, Veldhuijzen van Zanten JJCS, Metsios GS, Carroll D, Kitas GD (2010a) The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 4:302–312. https://doi.org/10.2174/1874192401004010302

    Article  PubMed Central  PubMed  Google Scholar 

  26. Friedrich V, Flores R, Muller A, Sehba FA (2010a) Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage. Neuroscience 165:968–975. https://doi.org/10.1016/j.neuroscience.2009.10.038

    Article  CAS  PubMed  Google Scholar 

  27. Iuliano BA, Pluta RM, Jung C, Oldfield EH (2004) Endothelial dysfunction in a primate model of cerebral vasospasm. J Neurosurg 100:287–294. https://doi.org/10.3171/jns.2004.100.2.0287

    Article  PubMed  Google Scholar 

  28. Pluta RM (2008a) Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochirurgica Supplementum. pp. 139–147. doi:https://doi.org/10.1007/978-3-211-75718-5-28

  29. Pluta RM (2008b) Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochir 104:139–147

    Article  CAS  Google Scholar 

  30. Findlay JM, Weir BK, Kanamaru K, Espinosa F (1989) Arterial wall changes in cerebral vasospasm. Neurosurgery 25:736–745 discussion 745–6

    Article  CAS  PubMed  Google Scholar 

  31. Sasaki T, Kassell NF, Zuccarello M, Nakagomi T, Fijiwara S, Colohan AR, Lehman M (1986) Barrier disruption in the major cerebral arteries during the acute stage after experimental subarachnoid hemorrhage. Neurosurgery 19:177–184. https://doi.org/10.1227/00006123-198608000-00002

    Article  CAS  PubMed  Google Scholar 

  32. Zuccarello M, Kassell NF, Sasaki T, Fujiwara S, Nakagomi T, Lehman RM (1987) Barrier disruption in the major cerebral arteries after experimental subarachnoid hemorrhage in spontaneously hypertensive and normotensive rats. Neurosurgery 21:515–522. https://doi.org/10.1227/00006123-198710000-00013

    Article  CAS  PubMed  Google Scholar 

  33. Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins AL, Vallabhajosyula P (1998) Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery 42:352–362. https://doi.org/10.1097/00006123-199802000-00091

    Article  CAS  PubMed  Google Scholar 

  34. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH (2004) Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 24:916–925. https://doi.org/10.1097/01.WCB.0000125886.48838.7E

    Article  CAS  PubMed  Google Scholar 

  35. Fujii M, Duris K, Altay O, Soejima Y, Sherchan P, Zhang JH (2012) Inhibition of rho kinase by hydroxyfasudil attenuates brain edema after subarachnoid hemorrhage in rats. Neurochem Int 60:327–333. https://doi.org/10.1016/j.neuint.2011.12.014

    Article  CAS  PubMed  Google Scholar 

  36. Plesnila N (2013) Pathophysiological role of global cerebral ischemia following subarachnoid hemorrhage: the current experimental evidence. Stroke Res Treat. https://doi.org/10.1155/2013/651958

  37. Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH (n.d.) Early brain injury, an evolving frontier in subarachnoid hemorrhage research. https://doi.org/10.1007/s12975-013-0257-2

  38. Guo ZD, Sun XC, Zhang JH, (2011) Mechanisms of early brain injury after SAH: matrix metalloproteinase 9. Acta Neurochirurgica Supplementum pp 63–65. doi:https://doi.org/10.1007/978-3-7091-0353-1-11

  39. Sehba F a, Flores R, Muller A, Friedrich V, Chen J-F, Britz GW, Winn HR, Bederson JB (2010) Adenosine A(2A) receptors in early ischemic vascular injury after subarachnoid hemorrhage. Laboratory investigation. J Neurosurg 113:826–834. https://doi.org/10.3171/2009.9.JNS09802

    Article  PubMed Central  PubMed  Google Scholar 

  40. Sehba F a, Friedrich V, Makonnen G, Bederson JB (2007) Acute cerebral vascular injury after subarachnoid hemorrhage and its prevention by administration of a nitric oxide donor. J Neurosurg 106:321–329. https://doi.org/10.3171/jns.2007.106.2.321

    Article  CAS  PubMed  Google Scholar 

  41. Alkan T, Tureyen K, Ulutas M, Kahveci N, Goren B, Korfali E, Ozluk K (2001) Acute and delayed vasoconstriction after subarachnoid hemorrhage: local cerebral blood flow, histopathology, and morphology in the rat basilar artery. Arch Physiol Biochem 109:145–153. https://doi.org/10.1076/apab.109.2.145.4267

    Article  CAS  PubMed  Google Scholar 

  42. Clower BR, Yamamoto Y, Cain L, Haines DE, Smith RR (1994) Endothelial injury following experimental subarachnoid hemorrhage in rats: effects on brain blood flow. Anat Rec 240:104–114. https://doi.org/10.1002/ar.1092400110

    Article  CAS  PubMed  Google Scholar 

  43. Ono S, Date I, Nakajima M, Onoda K, Ogihara K, Shiota T, Asari S, Ninomiya Y et al (1997) Three-dimensional analysis of vasospastic major cerebral arteries in rats with the corrosion cast technique. Stroke 28:1631–1637. https://doi.org/10.1161/01.STR.28.8.1631

    Article  CAS  PubMed  Google Scholar 

  44. Ono S, Date I, Onoda K, Ohmoto T (2003) Time course of the diameter of the major cerebral arteries after subarachnoid hemorrhage using corrosion cast technique. Neurol Res 25:383–389. https://doi.org/10.1179/016164103101201535

    Article  PubMed  Google Scholar 

  45. Sehba F a, Ding WH, Chereshnev I, Bederson JB (1999) Effects of S-nitrosoglutathione on acute vasoconstriction and glutamate release after subarachnoid hemorrhage. Stroke 30:1955–1961. https://doi.org/10.1161/01.STR.30.9.1955

    Article  CAS  PubMed  Google Scholar 

  46. Sehba F a, Mostafa G, Friedrich V, Bederson JB (2005) Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg 102:1094–1100. https://doi.org/10.3171/jns.2005.102.6.1094

    Article  PubMed  Google Scholar 

  47. Sun BL, Zheng CB, Yang MF, Yuan H, Zhang SM, Wang LX (2009) Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage. Cell Mol Neurobiol 29:235–241. https://doi.org/10.1007/s10571-008-9316-8

    Article  PubMed  Google Scholar 

  48. Hansen-Schwartz J, Hoel NL, Xu C-B, Svendgaard N-A, Edvinsson L (2003a) Subarachnoid hemorrhage-induced upregulation of the 5-HT1B receptor in cerebral arteries in rats. J Neurosurg 99:115–120. https://doi.org/10.3171/jns.2003.99.1.0115

    Article  CAS  PubMed  Google Scholar 

  49. Hansen-Schwartz J, Hoel NL, Zhou M, Xu C-B, Svendgaard NA, Edvinsson L (2003b) Subarachnoid hemorrhage enhances endothelin receptor expression and function in rat cerebral arteries. Neurosurgery 52(1188–1194):1194–1195. https://doi.org/10.1227/01.NEU.0000058467.82442.64

    Article  Google Scholar 

  50. Hongo K, Kassell NF, Nakagomi T, Sasaki T, Tsukahara T, Ogawa H, Vollmer DG, Lehman RM (1988) Subarachnoid hemorrhage inhibition of endothelium-derived relaxing factor in rabbit basilar artery. J Neurosurg 69:247–253. https://doi.org/10.3171/jns.1988.69.2.0247

    Article  CAS  PubMed  Google Scholar 

  51. Nakagomi T, Kassell NF, Sasaki T, Fujiwara S, Lehman RM, Johshita H, Nazar GB, Torner JC (1987) Effect of subarachnoid hemorrhage on endothelium-dependent vasodilation. J Neurosurg 66:915–923. https://doi.org/10.3171/jns.1987.66.6.0915

    Article  CAS  PubMed  Google Scholar 

  52. Bevan JA, Bevan RD, Walters CL, Wellman T (1998) Functional changes in human pial arteries (300 to 900 micrometer ID) within 48 hours of aneurysmal subarachnoid hemorrhage. Stroke 29:2575–2579

    Article  CAS  PubMed  Google Scholar 

  53. Hatake K, Wakabayashi I, Kakishita E, Hishida S (1992) Impairment of endothelium-dependent relaxation in human basilar artery after subarachnoid hemorrhage. Stroke 23:1111–1116 discussion 1116-7

    Article  CAS  PubMed  Google Scholar 

  54. Choy JC, Granville DJ, Hunt DWC, McManus BM (2001) Endothelial cell apoptosis: biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol 33:1673–1690. https://doi.org/10.1006/jmcc.2001.1419

    Article  CAS  PubMed  Google Scholar 

  55. Friedrich V, Flores R, Sehba FA (2012) Cell death starts early after subarachnoid hemorrhage. Neurosci Lett 512:6–11. https://doi.org/10.1016/j.neulet.2012.01.036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Comair YG, Schipper HM, Brem S (1993) The prevention of oxyhemoglobin-induced endothelial and smooth muscle cytoskeletal injury by deferoxamine. Neurosurgery 32:58–64 discussion 64–5

    Article  CAS  PubMed  Google Scholar 

  57. Foley PL, Takenaka K, Kassell NF, Lee KS (1994b) Cytotoxic effects of bloody cerebrospinal fluid on cerebral endothelial cells in culture. J Neurosurg 81:87–92. https://doi.org/10.3171/jns.1994.81.1.0087

    Article  CAS  PubMed  Google Scholar 

  58. Takenaka K, Kassell NF, Foley PL, Lee KS (1993) Oxyhemoglobin-induced cytotoxicity and arachidonic acid release in cultured bovine endothelial cells. Stroke 24:839–845 discussion 845–6

    Article  CAS  PubMed  Google Scholar 

  59. Guo Z, Xu L, Wang X, Sun X (2015) MMP-9 expression and activity is concurrent with endothelial cell apoptosis in the basilar artery after subarachnoid hemorrhaging in rats. Neurol Sci 36:1241–1245. https://doi.org/10.1007/s10072-015-2092-6

    Article  PubMed  Google Scholar 

  60. Suzuki H, Sozen T, Hasegawa Y, Chen W, Kanamaru K, Taki W, Zhang JH (2011) Subarachnoid hemorrhage causes pulmonary endothelial cell apoptosis and neurogenic pulmonary edema in mice. Acta Neurochir 111:129–132. https://doi.org/10.1007/978-3-7091-0693-8_21

    Article  Google Scholar 

  61. Zubkov AY, Ogihara K, Bernanke DH, Parent AD, Zhang J (2000) Apoptosis of endothelial cells in vessels affected by cerebral vasospasm. Surg Neurol 53:260–266. https://doi.org/10.1016/S0090-3019(99)00187-1

    Article  CAS  PubMed  Google Scholar 

  62. Meguro T, Chen B, Lancon J, Zhang JH (2001) Oxyhemoglobin induces caspase-mediated cell death in cerebral endothelial cells. J Neurochem 77:1128–1135. https://doi.org/10.1046/j.1471-4159.2001.00313.x

    Article  CAS  PubMed  Google Scholar 

  63. Zhang H, Weir BK, Macdonald RL, Marton LS, Solenski NJ, Kwan AL, Lee KS (1996) Mechanisms of [Ca++]i elevation induced by erythrocyte components in endothelial cells. J Pharmacol Exp Ther 277:1501–1509

    CAS  PubMed  Google Scholar 

  64. Cook DA, Vollrath B (1995) Free radicals and intracellular events associated with cerebrovascular spasm. Cardiovasc Res. https://doi.org/10.1016/S0008-6363(95)00087-9

  65. Ayer RE, Zhang JH (2008a) Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir 104:33–41

    Article  CAS  Google Scholar 

  66. Lum H, Roebuck KA (2001) Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 280:C719–C741. https://doi.org/10.1152/ajpcell.2001.280.4.C719

    Article  CAS  PubMed  Google Scholar 

  67. Won SM, Lee JH, Park UJ, Gwag J, Gwag BJ, Lee YB (2011) Iron mediates endothelial cell damage and blood–brain barrier opening in the hippocampus after transient forebrain ischemia in rats. Exp Mol Med 43:121–128. https://doi.org/10.3858/emm.2011.43.2.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta Biomembr. https://doi.org/10.1016/j.bbamem.2007.07.012

  69. Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY (2010) Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc Res. https://doi.org/10.1093/cvr/cvq144

  70. Germanò a, d’Avella D, Imperatore C, Caruso G, Tomasello F (2000) Time-course of blood–brain barrier permeability changes after experimental subarachnoid haemorrhage. Acta Neurochir 142:575–580; discussion 580–1. https://doi.org/10.1007/s007010050472

    Article  PubMed  Google Scholar 

  71. Dóczi T (1985) The pathogenetic and prognostic significance of blood–brain barrier damage at the acute stage of aneurysmal subarachnoid haemorrhage. Clinical and experimental studies. Acta Neurochir (Wien) 77:110–132. https://doi.org/10.1007/BF01476215

    Article  Google Scholar 

  72. Doczi T, Joo F, Adam G, Bozóky B, Szerdahelyi P (1986) Blood–brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model. Neurosurgery 18:733–739. https://doi.org/10.1227/00006123-198606000-00010

    Article  CAS  PubMed  Google Scholar 

  73. Gules I, Satoh M, Nanda A, Zhang JH (2003) Apoptosis, blood–brain barrier, and subarachnoid hemorrhage. Acta Neurochir 86:483–487

    CAS  Google Scholar 

  74. Kahles T, Luedike P, Endres M, Galla H-J, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood–brain barrier damage in experimental stroke. Stroke 38:3000–3006. https://doi.org/10.1161/STROKEAHA.107.489765

    Article  CAS  PubMed  Google Scholar 

  75. Li Y, Yang H, Ni W, Gu Y (2017) Effects of deferoxamine on blood–brain barrier disruption after subarachnoid hemorrhage. PLoS One 12:e0172784. https://doi.org/10.1371/journal.pone.0172784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Li Z, Liang G, Ma T, Li J, Wang P, Liu L, Yu B, Liu Y et al (2015) Blood–brain barrier permeability change and regulation mechanism after subarachnoid hemorrhage. Metab Brain Dis 30:597–603. https://doi.org/10.1007/s11011-014-9609-1

    Article  CAS  PubMed  Google Scholar 

  77. Kondo T, Hafezi-Moghadam A, Thomas K, Wagner DD, Kahn CR (2004) Mice lacking insulin or insulin-like growth factor 1 receptors in vascular endothelial cells maintain normal blood–brain barrier. Biochem Biophys Res Commun 317:315–320. https://doi.org/10.1016/j.bbrc.2004.03.043

    Article  CAS  PubMed  Google Scholar 

  78. Ansar S, Larsen C, Maddahi A, Edvinsson L (2010) Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries. Brain Res 1316:163–172. https://doi.org/10.1016/j.brainres.2009.12.031

    Article  CAS  PubMed  Google Scholar 

  79. Victor FC, Gottlieb AB (2002) TNF-alpha and apoptosis: implications for the pathogenesis and treatment of psoriasis. J Drugs Dermatol 1:264–275

    PubMed  Google Scholar 

  80. Zhou C, Yamaguchi M, Colohan ART, Zhang JH (2005) Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 25:572–582. https://doi.org/10.1038/sj.jcbfm.9600069

    Article  CAS  PubMed  Google Scholar 

  81. Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH (2004) Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 24:419–431

    Article  CAS  PubMed  Google Scholar 

  82. Lakhan SE, Kirchgessner A, Tepper D, Leonard A (2013) Matrix metalloproteinases and blood–brain barrier disruption in acute ischemic stroke. Front Neurol 4:32. https://doi.org/10.3389/fneur.2013.00032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Leib SL, Leppert D, Clements J, Täuber MG (2000) Matrix metalloproteinases contribute to brain damage in experimental pneumococcal meningitis. Infect Immun 68:615–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rosenberg GA, Estrada EY, Dencoff JE, Stetler-Stevenson WG (1995) Tumor necrosis factor-α-induced gelatinase B causes delayed opening of the blood–brain barrier: an expanded therapeutic window. Brain Res 703:151–155. https://doi.org/10.1016/0006-8993(95)01089-0

    Article  CAS  PubMed  Google Scholar 

  85. Seo JH, Guo S, Lok J, Navaratna D, Whalen MJ, Kim K-W, Lo EH (2012) Neurovascular matrix metalloproteinases and the blood–brain barrier. Curr Pharm Des 18:3645–3648 doi:CPD-EPUB-20120511-002 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Egashira Y, Zhao H, Hua Y, Keep RF, Xi G (2015) White matter injury after subarachnoid hemorrhage: role of blood–brain barrier disruption and matrix metalloproteinase-9. Stroke 46:2909–2915. https://doi.org/10.1161/STROKEAHA.115.010351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Turner RJ, Sharp FR (2016) Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci 10:56. https://doi.org/10.3389/fncel.2016.00056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Guo Z, Sun X, He Z, Jiang Y, Zhang X, Zhang JH (2010) Matrix metalloproteinase-9 potentiates early brain injury after subarachnoid hemorrhage. Neurol Res 32:715–720. https://doi.org/10.1179/016164109X12478302362491

    Article  CAS  PubMed  Google Scholar 

  89. Lo EH, Wang X, Louise Cuzner M (2002) Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res. https://doi.org/10.1002/jnr.10270

  90. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:1–24. https://doi.org/10.1101/cshperspect.a005058

    Article  Google Scholar 

  91. Shiba M, Fujimoto M, Imanaka-Yoshida K, Yoshida T, Taki W, Suzuki H (2014) Tenascin-C causes neuronal apoptosis after subarachnoid hemorrhage in rats. Transl Stroke Res 5:238–247. https://doi.org/10.1007/s12975-014-0333-2

    Article  PubMed  Google Scholar 

  92. Suzuki H, Kanamaru K, Suzuki Y, Aimi Y, Matsubara N, Araki T, Takayasu M, Kinoshita N et al (2010b) Tenascin-C is induced in cerebral vasospasm after subarachnoid hemorrhage in rats and humans: a pilot study. Neurol Res 32:179–184. https://doi.org/10.1179/174313208X355495

    Article  CAS  PubMed  Google Scholar 

  93. Fujimoto M, Shiba M, Kawakita F, Liu L, Shimojo N, Imanaka-Yoshida K, Yoshida T, Suzuki H (2017) Effects of tenascin-C knockout on cerebral vasospasm after experimental subarachnoid hemorrhage in mice. Mol Neurobiol 1–8. https://doi.org/10.1007/s12035-017-0466-x

  94. Shiba M, Fujimoto M, Kawakita F, Imanaka-Yoshida K, Yoshida T, Kanamaru K, Taki W, Suzuki H (2015) Effects of tenascin-C on early brain injury after subarachnoid hemorrhage in rats. In: Neurovascular events after subarachnoid hemorrhage. Springer International Publishing, Cham, pp. 69–73. https://doi.org/10.1007/978-3-319-04981-6_12

    Book  Google Scholar 

  95. Butt OI, Buehler PW, D’Agnillo F (2011) Blood–brain barrier disruption and oxidative stress in Guinea pig after systemic exposure to modified cell-free hemoglobin. Am J Pathol 178:1316–1328. https://doi.org/10.1016/j.ajpath.2010.12.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Chen J, Chen G, Li J, Qian C, Mo H, Gu C, Yan F, Yan W et al (2014) Melatonin attenuates inflammatory response-induced brain edema in early brain injury following a subarachnoid hemorrhage: a possible role for the regulation of pro-inflammatory cytokines. J Pineal Res 57:340–347. https://doi.org/10.1111/jpi.12173

    Article  CAS  PubMed  Google Scholar 

  97. Fan L f, He P y, Peng Y c, Du Q h, Ma Y j, Jin J x, Xu H z, Li J r et al (2017) Mdivi-1 ameliorates early brain injury after subarachnoid hemorrhage via the suppression of inflammation-related blood–brain barrier disruption and endoplasmic reticulum stress-based apoptosis. Free Radic Biol Med 112:336–349. https://doi.org/10.1016/j.freeradbiomed.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  98. Ersahin M, Toklu HZ, Çetinel Ş, Yüksel M, Yèen BÇ, Şener G (2009) Melatonin reduces experimental subarachnoid hemorrhage-induced oxidative brain damage and neurological symptoms. J Pineal Res 46:324–332. https://doi.org/10.1111/j.1600-079X.2009.00664.x

    Article  CAS  PubMed  Google Scholar 

  99. Chen Y, Zhang Y, Tang J, Liu F, Hu Q, Luo C, Tang J, Feng H et al (2015) Norrin protected blood–brain barrier via frizzled-4/β-catenin pathway after subarachnoid hemorrhage in rats. Stroke 46:529–536. https://doi.org/10.1161/STROKEAHA.114.007265

    Article  CAS  PubMed  Google Scholar 

  100. Ying G-y, Jing C-h, Li J-r, Wu C, Feng Y, Jing-yin Chen MD, L. W, Brandon J et al (2016) Neuroprotective effects of valproic acid on blood–brain barrier disruption and apoptosis-related early brain injury in rats subjected to subarachnoid hemorrhage are modulated by heat shock protein 70/matrix metalloproteinases and heat shock protein 70/AKT. Neurosurgery 79:286–295. https://doi.org/10.1227/NEU.0000000000001264

    Article  PubMed  Google Scholar 

  101. Altay O, Suzuki H, Hasegawa Y, Caner B, Krafft PR, Fujii M, Tang J, Zhang JH (2012) Isoflurane attenuates blood–brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke 43:2513–2516. https://doi.org/10.1161/STROKEAHA.112.661728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Yuan J, Liu W, Zhu H, Zhang X, Feng Y, Chen Y, Feng H, Lin J (2017) Curcumin attenuates blood–brain barrier disruption after subarachnoid hemorrhage in mice. J Surg Res 207:85–91. https://doi.org/10.1016/j.jss.2016.08.090

    Article  CAS  PubMed  Google Scholar 

  103. Zuo S, Ge H, Li Q, Zhang X, Hu R, Hu S, Liu X, Zhang JH et al (2017) Artesunate protected blood–brain barrier via sphingosine 1 phosphate receptor 1/phosphatidylinositol 3 kinase pathway after subarachnoid hemorrhage in rats. Mol Neurobiol 54:1213–1228. https://doi.org/10.1007/s12035-016-9732-6

    Article  CAS  PubMed  Google Scholar 

  104. Suzuki H, Ayer R, Sugawara T, Chen W, Sozen T, Hasegawa Y, Kanamaru K, Zhang JH (2010a) Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med 38:612–618. https://doi.org/10.1097/CCM.0b013e3181c027ae

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Enkhjargal B, McBride DW, Manaenko A, Reis C, Sakai Y, Tang J, Zhang JH (2016) Intranasal administration of vitamin D attenuates blood–brain barrier disruption through endogenous upregulation of osteopontin and activation of CD44/P-gp glycosylation signaling after subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab 37:2555–2566. https://doi.org/10.1177/0271678X16671147

    Article  PubMed Central  PubMed  Google Scholar 

  106. Pang J, Chen Y, Kuai L, Yang P, Peng J, Wu Y, Chen Y, Vitek MP et al (2017) Inhibition of blood–brain barrier disruption by an apolipoprotein E-mimetic peptide ameliorates early brain injury in experimental subarachnoid hemorrhage. Transl Stroke Res 8:257–272. https://doi.org/10.1007/s12975-016-0507-1

    Article  CAS  PubMed  Google Scholar 

  107. Xie, Z., Enkhjargal, B., Reis, C., Huang, L., Wan, W., Tang, J., Cheng, Y., Zhang, J.H., 2017. Netrin-1 preserves blood–brain barrier integrity through deleted in colorectal cancer/focal adhesion kinase/RhoA signaling pathway following subarachnoid hemorrhage in rats. J. Am. Heart Assoc. 6. doi:https://doi.org/10.1161/JAHA.116.005198

  108. Bendok BR, Getch CC, Malisch TW, Batjer HH (1998) Treatment of aneurysmal subarachnoid hemorrhage. Semin Neurol 18:521–531. https://doi.org/10.1055/s-2008-1040905

    Article  CAS  PubMed  Google Scholar 

  109. Dorsch NW (1995) Cerebral arterial spasm—a clinical review. Br J Neurosurg 9:403–412

    Article  CAS  PubMed  Google Scholar 

  110. Burrell C, Avalon NE, Siegel J, Pizzi M, Dutta T, Charlesworth MC, Freeman WD (2016) Precision medicine of aneurysmal subarachnoid hemorrhage, vasospasm and delayed cerebral ischemia. Expert Rev Neurother. https://doi.org/10.1080/14737175.2016.1203257

  111. Chyatte D (1990) Anti-inflammatory agents and cerebral vasospasm. Neurosurg Clin N Am 1:433–450

    Article  CAS  PubMed  Google Scholar 

  112. Matsui T, Takuwa Y, Johshita H, Yamashita K, Asano T (1991) Possible role of protein kinase C-dependent smooth muscle contraction in the pathogenesis of chronic cerebral vasospasm. J Cereb Blood Flow Metab 11:143–149. https://doi.org/10.1038/jcbfm.1991.17

    Article  CAS  PubMed  Google Scholar 

  113. Pradilla G, Chaichana KL, Hoang S, Huang J, Tamargo RJ (2010) Inflammation and cerebral vasospasm after subarachnoid hemorrhage. Neurosurg Clin N Am. https://doi.org/10.1016/j.nec.2009.10.008

  114. Crowley RW, Medel R, Dumont AS, Ilodigwe D, Kassell NF, Mayer SA, Ruefenacht D, Schmiedek P et al (2011) Angiographic vasospasm is strongly correlated with cerebral infarction after subarachnoid hemorrhage. Stroke 42:919–923. https://doi.org/10.1161/STROKEAHA.110.597005

    Article  PubMed  Google Scholar 

  115. Jung S-W, Lee C-Y, Yim M-B (2012) The relationship between subarachnoid hemorrhage volume and development of cerebral vasospasm. J Cerebrovasc Endovasc Neurosurg 14:186–191. https://doi.org/10.7461/jcen.2012.14.3.186

    Article  PubMed Central  PubMed  Google Scholar 

  116. Macdonald RL, Weir BK (1991) A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke 22:971–982. https://doi.org/10.1161/01.STR.22.8.971

    Article  CAS  PubMed  Google Scholar 

  117. Suzuki H, Muramatsu M, Kojima T, Taki W (2003) Intracranial heme metabolism and cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 34:2796–2800. https://doi.org/10.1161/01.STR.0000103743.62248.12

    Article  PubMed  Google Scholar 

  118. Caner H, Oruçkaptan H, Bolay H, Kilinç K, Senaati S, Benli K, Ayhan A (1991) The role of lipid peroxidation in the genesis of vasospasm secondary to subarachnoid hemorrhage. Kobe J Med Sci 37:13–20

    CAS  PubMed  Google Scholar 

  119. Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G (2011) Role of iron in brain injury after intraventricular hemorrhage. Stroke 42:465–470. https://doi.org/10.1161/STROKEAHA.110.602755

    Article  CAS  PubMed  Google Scholar 

  120. Lin G, Macdonald RL, Marton LS, Kowalczuk A, Solenski NJ, Weir BK (2001) Hemoglobin increases endothelin-1 in endothelial cells by decreasing nitric oxide. Biochem Biophys Res Commun 280:824–830. https://doi.org/10.1006/BBRC.2000.4167

    Article  CAS  PubMed  Google Scholar 

  121. Alabadi JA, Torregrosa G, Miranda FJ, Salom JB, Centeno JM, Alborch E (1997) Impairment of the modulatory role of nitric oxide on the endothelin-1-elicited contraction of cerebral arteries: a pathogenetic factor in cerebral vasospasm after subarachnoid hemorrhage? Neurosurgery 41:245–252

    Article  CAS  PubMed  Google Scholar 

  122. Sabri M, Ai J, Knight B, Tariq A, Jeon H, Shang X, Marsden PA, MacDonald RL (2011) Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 31:190–199. https://doi.org/10.1038/jcbfm.2010.76

    Article  CAS  PubMed  Google Scholar 

  123. Olsen SB, Tang DB, Jackson MR, Gomez ER, Ayala B, Alving BM (1996) Enhancement of platelet deposition by cross-linked hemoglobin in a rat carotid endarterectomy model. Circulation 93:327–332. https://doi.org/10.1161/01.CIR.93.2.327

    Article  CAS  PubMed  Google Scholar 

  124. Pluta R (2005) Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther 105:23–56. https://doi.org/10.1016/j.pharmthera.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  125. Gabikian P, Clatterbuck RE, Eberhart CG, Tyler BM, Tierney TS, Tamargo RJ (2002) Prevention of experimental cerebral vasospasm by intracranial delivery of a nitric oxide donor from a controlled-release polymer: toxicity and efficacy studies in rabbits and rats. Stroke 33:2681–2686. https://doi.org/10.1161/01.STR.0000033931.62992.B1

    Article  PubMed  Google Scholar 

  126. Pluta RM, Oldfield EH, Boock RJ (1997) Reversal and prevention of cerebral vasospasm by intracarotid infusions of nitric oxide donors in a primate model of subarachnoid hemorrhage. J Neurosurg. https://doi.org/10.3171/jns.1997.87.5.0746

  127. Thomas JE, Rosenwasser RH (1999) Reversal of severe cerebral vasospasm in three patients after aneurysmal subarachnoid hemorrhage: initial observations regarding the use of intraventricular sodium nitroprusside in humans. Neurosurgery 44:48. https://doi.org/10.1097/00006123-199901000-00026

    Article  CAS  PubMed  Google Scholar 

  128. Bacon CR, Cary NR, Davenport AP (1995) Distribution of endothelin receptors in atherosclerotic human coronary arteries. J Cardiovasc Pharmacol 26(Suppl 3):S439–S441

    Article  CAS  PubMed  Google Scholar 

  129. Davenport AP, Kuc RE, Maguire JJ, Harland SP (1995) ETA receptors predominate in the human vasculature and mediate constriction. J Cardiovasc Pharmacol 26(Suppl 3):S265–S267. https://doi.org/10.1097/00005344-199526003-00080

    Article  CAS  PubMed  Google Scholar 

  130. Seifert V, Loffler BM, Zimmermann M, Roux S, Stolke D (1995) Endothelin concentrations in patients with aneurysmal subarachnoid hemorrhage. Correlation with cerebral vasospasm, delayed ischemic neurological deficits, and volume of hematoma. J Neurosurg 82:55–62. https://doi.org/10.3171/jns.1995.82.1.0055

    Article  CAS  PubMed  Google Scholar 

  131. Boscolo E, Pavesi G, Zampieri P, Conconi MT, Calore C, Scienza R, Parnigotto PP, Folin M (2006) Endothelial cells from human cerebral aneurysm and arteriovenous malformation release ET-1 in response to vessel rupture. Int J Mol Med 18:813–819

    CAS  PubMed  Google Scholar 

  132. Gaetanu P, Rodriguez Baena YR, Grignani G, Spanu G, Pacchiarini L, Paoletti P, Gaetani P, Rodriguez y Baena R et al (1994) Endothelin and aneurysmal subarachnoid haemorrhage: a study of subarachnoid cisternal cerebrospinal fluid. J Neurol Neurosurg Psychiatry 57:66–72

    Article  Google Scholar 

  133. Sharkey J, Butcher SP, Kelly JS (1994) Endothelin-1 induced middle cerebral artery occlusion: pathological consequences and neuroprotective effects of MK801. J Auton Nerv Syst 49:177–185. https://doi.org/10.1016/0165-1838(94)90109-0

    Article  Google Scholar 

  134. Edvinsson L, Povlsen GK, Ahnstedt H, Waldsee R (2014) CaMKII inhibition with KN93 attenuates endothelin and serotonin receptor-mediated vasoconstriction and prevents subarachnoid hemorrhage-induced deficits in sensorimotor function. J. Neuroinflammation 11. doi:https://doi.org/10.1186/s12974-014-0207-2

  135. Foley PL, Caner HH, Kassell NF, Lee KS (1994a) Reversal of subarachnoid hemorrhage-induced vasoconstriction with an endothelin receptor antagonist. Neurosurgery 34:103–108

    Google Scholar 

  136. He GW, Liu MH, Yang Q, Furnary A, Yim APC (2007) Role of endothelin-1 receptor antagonists in vasoconstriction mediated by endothelin and other vasoconstrictors in human internal mammary artery. Ann Thorac Surg 84:1522–1527. https://doi.org/10.1016/j.athoracsur.2007.05.064

    Article  PubMed  Google Scholar 

  137. Singhal AK, Symons JD, Boudina S, Jaishy B, Shiu YE (2010) Role of endothelial cells in myocardial ischemia–reperfusion injury. Vasc Dis Prev 7:1–14. https://doi.org/10.2174/1874120701007010001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Dumont AS, Dumont RJ, Chow MM, Lin C-L, Calisaneller T, Ley KF, Kassell NF, Lee KS (2003) Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery 53:123–135. https://doi.org/10.1227/01.NEU.0000068863.37133.9E

    Article  PubMed  Google Scholar 

  139. Findlay JM, Macdonald RL, Weir BK (1991) Current concepts of pathophysiology and management of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Cerebrovasc Brain Metab Rev 3:336–361

    CAS  PubMed  Google Scholar 

  140. Mayberg MR (1998) Cerebral vasospasm. Neurosurg Clin N Am 9:615–627

    Article  CAS  PubMed  Google Scholar 

  141. Zhang J, Lewis A, Bernanke D, Zubkov A, Glower B (1998) Stroke: anatomy of a catastrophic event. Anat Rec. https://doi.org/10.1002/(SICI)1097-0185(199804)253:2<58::AID-AR9>3.0.CO;2-A

  142. Davie N, Haleen SJ, Upton PD, Polak JM, Yacoub MH, Morrell NW, Wharton J (2002) ET(a) and ET(B) receptors modulate the proliferation of human pulmonary artery smooth muscle cells. Am J Respir Crit Care Med 165:398–405. https://doi.org/10.1164/ajrccm.165.3.2104059

    Article  PubMed  Google Scholar 

  143. Yahiaoui L, Villeneuve A, Valderrama-Carvajal H, Burke F, Fixman ED (2006) Endothelin-1 regulates proliferative responses, both alone and synergistically with PDGF, in rat tracheal smooth muscle cells. Cell Physiol Biochem 17:37–46. https://doi.org/10.1159/000091462

    Article  CAS  PubMed  Google Scholar 

  144. Borel CO, McKee A, Parra A, Haglund MM, Solan A, Prabhakar V, Sheng H, Warner DS et al (2003) Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke 34:427–432. https://doi.org/10.1161/01.STR.0000053848.06436.AB

    Article  CAS  PubMed  Google Scholar 

  145. Pickard JD, Graham DI, Matear E, MacPherson P, Tamura A, Fitch W (1985) Ultrastructure of cerebral arteries following experimental subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 48:256–262. https://doi.org/10.1136/jnnp.48.3.256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Crompton MR (1964) Hypothalamic lesions following the rupture of cerebral berry aneurysms. Brain 86:301–314. https://doi.org/10.1093/brain/86.2.301

    Article  Google Scholar 

  147. Hughes JT, Schianchi PM (1978) Cerebral artery spasm. J Neurosurg 48:515–525. https://doi.org/10.3171/jns.1978.48.4.0515

    Article  CAS  PubMed  Google Scholar 

  148. Ryba M, Jarzabek-Chorzelska M, Chorzelski T, Pastuszko M (1992) Is vascular angiopathy following intracranial aneurysm rupture immunologically mediated? Acta Neurochir 117:34–37. https://doi.org/10.1007/BF01400632

    Article  CAS  PubMed  Google Scholar 

  149. Shimizu T, Kito K, Hoshi T, Yamazaki N, Takahashi K, Takahashi M, Yamane K, Sim C et al (1982) Immunological study of late cerebral vasospasm in subarachnoid hemorrhage. Neurol Med Chir 22:613–619. https://doi.org/10.2176/nmc.22.613

    Article  CAS  Google Scholar 

  150. Chaudhry SR, Stoffel-Wagner B, Kinfe TM, Güresir E, Vatter H, Dietrich D, Lamprecht A, Muhammad S (2017) Elevated systemic IL-6 levels in patients with aneurysmal subarachnoid hemorrhage is an unspecific marker for post-SAH complications. Int J Mol Sci 18:2580. https://doi.org/10.3390/ijms18122580

    Article  CAS  PubMed Central  Google Scholar 

  151. Dhar R, Diringer MN (2008) The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocrit Care 8:404–412. https://doi.org/10.1007/s12028-008-9054-2

    Article  PubMed Central  PubMed  Google Scholar 

  152. Provencio JJ (2013) Inflammation in subarachnoid hemorrhage and delayed deterioration associated with vasospasm: a review. Acta Neurochirurgica, Supplementum. NIH public access, pp. 233–238. doi:https://doi.org/10.1007/978-3-7091-1192-5-42

  153. Gallia GL, Tamargo RJ (2006a) Leukocyte–endothelial cell interactions in chronic vasospasm after subarachnoid hemorrhage. Neurol Res 28:750–758. https://doi.org/10.1179/016164106X152025

    Article  CAS  PubMed  Google Scholar 

  154. Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, Fasano M (2005) Hemoglobin and heme scavenging. IUBMB Life. https://doi.org/10.1080/15216540500380871

  155. Provencio JJ, Altay T, Smithason S, Moore SK, Ransohoff RM (2011) Depletion of Ly6G/C+ cells ameliorates delayed cerebral vasospasm in subarachnoid hemorrhage. J Neuroimmunol 232:94–100. https://doi.org/10.1016/j.jneuroim.2010.10.016

    Article  CAS  PubMed  Google Scholar 

  156. Smithason S, Moore SK, Provencio JJ (2012) Systemic administration of LPS worsens delayed deterioration associated with vasospasm after subarachnoid hemorrhage through a myeloid cell-dependent mechanism. Neurocrit Care 16:327–334. https://doi.org/10.1007/s12028-011-9651-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Hailer NP, Bechmann I, Heizmann S, Nitsch R (1997) Adhesion molecule expression on phagocytic microglial cells following anterograde degeneration of perforant path axons. Hippocampus 7:341–349. https://doi.org/10.1002/(SICI)1098-1063(1997)7:3<341::AID-HIPO8>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  158. Mackay F, Loetscher H, Stueber D, Gehr G, Lesslauer W (1993) Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55. J Exp Med 177:1277–1286

    Article  CAS  PubMed  Google Scholar 

  159. Okada T, Suzuki H (2017) Toll-like receptor 4 as a possible therapeutic target for delayed brain injuries after aneurysmal subarachnoid hemorrhage. Neural Regen Res 12:193–196. https://doi.org/10.4103/1673-5374.200795

    Article  PubMed Central  PubMed  Google Scholar 

  160. Zheng VZ, Wong GKC (2017) Neuroinflammation responses after subarachnoid hemorrhage: a review. J Clin Neurosci 42:7–11. https://doi.org/10.1016/j.jocn.2017.02.001

    Article  PubMed  Google Scholar 

  161. Springer TA, Anderson DC, Springer TA, Arfors K-E, Lundberg C, Lindborm L, Lundberg K, Beatty PG et al (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314. https://doi.org/10.1016/0092-8674(94)90337-9

    Article  CAS  PubMed  Google Scholar 

  162. Dietrich HH, Dacey RG (2000) Molecular keys to the problems of cerebral vasospasm. Neurosurgery 46:517–530. https://doi.org/10.1097/00006123-200003000-00001

    Article  CAS  PubMed  Google Scholar 

  163. Ihle JN (2001) The Stat family in cytokine signaling. Curr Opin Cell Biol. https://doi.org/10.1016/S0955-0674(00)00199-X

  164. Bond M, Chase AJ, Baker AH, Newby AC (2001) Inhibition of transcription factor NF-κB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res 50:556–565. https://doi.org/10.1016/S0008-6363(01)00220-6

    Article  CAS  PubMed  Google Scholar 

  165. Lu Q, Harrington EO, Jackson H, Morin N, Shannon C, Rounds S (2006) Transforming growth factor-beta1-induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation. J Appl Physiol 101:375–384. https://doi.org/10.1152/japplphysiol.01515.2005

    Article  CAS  PubMed  Google Scholar 

  166. Tedgui A (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581. https://doi.org/10.1152/physrev.00024.2005

    Article  CAS  PubMed  Google Scholar 

  167. Madge LA, Pober JS (2001) TNF signaling in vascular endothelial cells. Exp Mol Pathol 70:317–325. https://doi.org/10.1006/exmp.2001.2368

    Article  CAS  PubMed  Google Scholar 

  168. Paria BC, Vogel SM, Ahmmed GU, Alamgir S, Shroff J, Malik AB, Tiruppathi C (2004) Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol 287:L1303–L1313. https://doi.org/10.1152/ajplung.00240.2004

    Article  CAS  PubMed  Google Scholar 

  169. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20:2175–2183. https://doi.org/10.1161/01.ATV.20.10.2175

    Article  CAS  PubMed  Google Scholar 

  170. Kofler S, Nickel T, Weis M (2005) Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci 108:205–213. https://doi.org/10.1042/CS20040174

    Article  CAS  Google Scholar 

  171. Winegar RA, Catherine Land M, Morgan WF (1989) Increased chromosomal radiosensitivity of a Chinese hamster ovary cell line that inducibly expresses the eco RI restriction endonuclease. Biochem Biophys Res Commun 160:1079–1084. https://doi.org/10.1016/S0006-291X(89)80113-5

    Article  CAS  PubMed  Google Scholar 

  172. da Fonseca ACC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FRS (2014) The impact of microglial activation on blood–brain barrier in brain diseases. Front Cell Neurosci 8:362. https://doi.org/10.3389/fncel.2014.00362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Suzuki S, Suzuki M, Iwabuchi T, Kamata Y (1983) Role of multiple cerebral microthrombosis in symptomatic cerebral vasospasm: with a case report. Neurosurgery 13:199–203. https://doi.org/10.1227/00006123-198308000-00018

    Article  CAS  PubMed  Google Scholar 

  174. Stein SC, Browne KD, Chen X-H, Smith DH, Graham DI (2006) Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: an autopsy study. Neurosurgery 59:781–788. https://doi.org/10.1227/01.NEU.0000227519.27569.45

    Article  PubMed  Google Scholar 

  175. Suzuki S, Kimura M, Souma M, Ohkima H, Shimizu T, Iwabuchi T (1990) Cerebral microthrombosis in symptomatic cerebral vasospasm—a quantitative histological study in autopsy cases. Neurol Med Chir (Tokyo) 30:309–316. https://doi.org/10.2176/nmc.30.309

    Article  CAS  Google Scholar 

  176. Frijns CJM, Fijnheer R, Algra A, Van Mourik JA, Van Gijn J, Rinkel GJE (2006) Early circulating levels of endothelial cell activation markers in aneurysmal subarachnoid haemorrhage: associations with cerebral ischaemic events and outcome. J Neurol Neurosurg Psychiatry 77:77–83. https://doi.org/10.1136/jnnp.2005.064956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Hirashima Y, Nakamura S, Endo S, Kuwayama N, Naruse Y, Takaku A (1997) Elevation of platelet activating factor, inflammatory cytokines, and coagulation factors in the internal jugular vein of patients with subarachnoid hemorrhage. Neurochem Res 22:1249–1255. https://doi.org/10.1023/A:1021985030331

    Article  CAS  PubMed  Google Scholar 

  178. Ohkuma H, Suzuki S, Kimura M, Sobata E (1991) Role of platelet function in symptomatic cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 22:854–859

    Article  CAS  PubMed  Google Scholar 

  179. Peltonen S, Juvela S, Kaste M, Lassila R (1997) Hemostasis and fibrinolysis activation after subarachnoid hemorrhage. J Neurosurg 87:207–214. https://doi.org/10.3171/jns.1997.87.2.0207

    Article  CAS  PubMed  Google Scholar 

  180. Suzuki M, Kudo A, Otawara Y, Hirashima Y, Takaku A, Ogawa A (1999) Extrinsic pathway of blood coagulation and thrombin in the cerebrospinal fluid after subarachnoid hemorrhage. Neurosurgery 44:487–494

    Article  CAS  PubMed  Google Scholar 

  181. Sabri M, Ai J, Lakovic K, Macdonald RL (2013) Mechanisms of microthrombosis and microcirculatory constriction after experimental subarachnoid hemorrhage. In: Acta Neurochirurgica, Supplementum. Springer, Vienna, pp. 185–192. doi:https://doi.org/10.1007/978-3-7091-1192-5-35

  182. Bombeli T, Karsan A, Tait JF, Harlan JM (1997) Apoptotic vascular endothelial cells become procoagulant. Blood 89:2429–2442. https://doi.org/10.1016/S0887-7963(97)80117-4

    Article  CAS  PubMed  Google Scholar 

  183. Yoshizumi M, Perrella M a, Burnett JC, Lee ME (1993) Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 73:205–209. https://doi.org/10.1161/01.RES.73.1.205

    Article  CAS  PubMed  Google Scholar 

  184. Bevilacqua MP, Pober JS, Majeau GR, Fierst W, Cotran RS, Gimbrone MA (1986) Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1 (inflammation/coagulation/tissue factor/monokine/endotoxin). Med Sci 83:4533–4537. https://doi.org/10.1073/pnas.83.12.4533

    Article  CAS  Google Scholar 

  185. Calabria AR, Shusta EV (2008) A genomic comparison of in vivo and in vitro brain microvascular endothelial cells. J Cereb Blood Flow Metab 28:135–148. https://doi.org/10.1038/sj.jcbfm.9600518

    Article  CAS  PubMed  Google Scholar 

  186. Huntley MA, Bien-Ly N, Daneman R, Watts RJ (2014) Dissecting gene expression at the blood–brain barrier. Front Neurosci 8. https://doi.org/10.3389/fnins.2014.00355

  187. Hupe M, Li MX, Kneitz S, Davydova D, Yokota C, Kele-Olovsson J, Hot B, Stenman JM et al (2017) Gene expression profiles of brain endothelial cells during embryonic development at bulk and single-cell levels. Sci Signal 10. https://doi.org/10.1126/scisignal.aag2476

  188. González-Cabrero J, Pozo M, Durán MC, De Nicolás R, Egido J, Vivanco F (2007) The proteome of endothelial cells. Methods Mol Biol 357:181–198. https://doi.org/10.1385/1-59745-214-9:181

    Article  PubMed  Google Scholar 

  189. Haqqani AS, Kelly J, Baumann E, Haseloff RF, Blasig IE, Stanimirovic DB (2007) Protein markers of ischemic insult in brain endothelial cells identified using 2D gel electrophoresis and ICAT-based quantitative proteomics. J Proteome Res 6:226–239. https://doi.org/10.1021/pr0603811

    Article  CAS  PubMed  Google Scholar 

  190. Won C, Lin Z, Kumar T,P, Li S, Ding L, Elkhal A, Szabó G, Vasudevan A (2013) Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat Commun 4. https://doi.org/10.1038/ncomms3149

  191. Buemi M, Cavallaro E, Floccari F, Sturiale A, Aloisi C, Trimarchi M, Corica F, Frisina N (2003) The pleiotropic effects of erythropoietin in the central nervous system. J Neuropathol Exp Neurol

  192. Haller H, Christel C, Dannenberg L, Thiele P, Lindschau C, Luft FC (1996) Signal transduction of erythropoietin in endothelial cells. Kidney Int. https://doi.org/10.1038/ki.1996.339

  193. Banerjee D, Rodriguez M, Nag M, Adamson JW (2000) Exposure of endothelial cells to recombinant human erythropoietin induces nitric oxide synthase activity. Kidney Int. https://doi.org/10.1046/j.1523-1755.2000.00039.x

  194. Beleslin-Cokic BB, Cokic VP, Yu X, Weksler BB, Schechter AN, Noguchi CT (2004) Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood. https://doi.org/10.1182/blood-2004-02-0744

  195. Grasso G, Buemi M, Alafaci C, Sfacteria A, Passalacqua M, Sturiale A, Calapai G, De Vico G et al (2002a) Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.082097299

  196. Grasso G, Passalacqua M, Sfacteria A, Conti A, Morabito A, Mazzullo G, De VG, Buemi M et al (2002b) Does administration of recombinant human erythropoietin attenuate the increase of S-100 protein observed in cerebrospinal fluid after experimental subarachnoid hemorrhage? J Neurosurg. https://doi.org/10.3171/jns.2002.96.3.0565

  197. Grasso G, Buemi M, Giambartino F (2014) The role of erythropoietin in aneurysmal subarachnoid haemorrhage: from bench to bedside. Acta Neurochir. https://doi.org/10.1007/978-3-319-04981-6_13

  198. Springborg JB, Møller C, Gideon P, Jørgensen OS, Juhler M, Olsen NV (2007) Erythropoietin in patients with aneurysmal subarachnoid haemorrhage: a double blind randomised clinical trial. Acta Neurochir. https://doi.org/10.1007/s00701-007-1284-z

  199. Güresir E, Vasiliadis N, Konczalla J, Raab P, Hattingen E, Seifert V, Vatter H (2013) Erythropoietin prevents delayed hemodynamic dysfunction after subarachnoid hemorrhage in a randomized controlled experimental setting. J Neurol Sci. https://doi.org/10.1016/j.jns.2013.07.004

  200. Tran KA, Zhang X, Predescu D, Huang X, MacHado RF, Göthert JR, Malik AB, Valyi-Nagy T et al (2016) Endothelial β-catenin signaling is required for maintaining adult blood–brain barrier integrity and central nervous system homeostasis. Circulation 133:177–186. https://doi.org/10.1161/CIRCULATIONAHA.115.015982

    Article  CAS  PubMed  Google Scholar 

  201. Chang J, Mancuso MR, Maier C, Liang X, Yuki K, Yang L, Kwong JW, Wang J et al (2017) Gpr124 is essential for blood–brain barrier integrity in central nervous system disease. Nat Med 23:450–460. https://doi.org/10.1038/nm.4309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  202. Lengfeld JE, Lutz SE, Smith JR, Diaconu C, Scott C, Kofman SB, Choi C, Walsh CM et al (2017) Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci 114:E1168–E1177. https://doi.org/10.1073/pnas.1609905114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Texas Health Science Center and AHA career development grant 18CDA34110036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Peeyush Kumar.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interests for this manuscript.

Additional information

Review criteria

This review was based on searches of the PubMed database using each of the terms “Subarachnoid Hemorrhage” and “SAH,” in combination with the terms “endothelial cell,” “early brain injury” or “EBI,” “apoptosis,” “blood–brain barrier” or “BBB,” “cerebral vasospasm” or “CV,” “Inflammation,” and “microthrombosis.” No time limit was set with regard to publication date. Only English-language articles were retrieved. Appropriate articles were selected based on abstract review. Full articles were subsequently acquired and their references were searched for further appropriate material.

Key Points

• Aneurysmal subarachnoid hemorrhage (aSAH) can cause early and delayed brain injury.

• Few accepted therapeutic strategies are available for improving poor outcome in the treatment of aSAH. Current treatment strategies aimed at rescuing cerebral vasospasm do not improve outcome.

• Endothelial cell injury/dysfunction during early phase injury can play a critical role in the in SAH complications.

• The blood–brain barrier (BBB) protects the central nervous system from neurotoxic plasma components, blood cells, and pathogens present in the systemic circulation.

• Experimental studies have shown that post aSAH, multiple factors contribute to BBB breakdown that can facilitate inflammatory and immune responses contributing to poor outcome.

• Advancement of basic and clinical research directed to rescue endothelial cell injury and protect and restore BBB function following aSAH might provide novel targets for clinical intervention.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peeyush Kumar, T., McBride, D.W., Dash, P.K. et al. Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Mol Neurobiol 56, 1992–2006 (2019). https://doi.org/10.1007/s12035-018-1213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1213-7

Keywords

Navigation