Skip to main content

Advertisement

Log in

Molecular Mechanisms of Vascular Dementia: What Can Be Learned from Animal Models of Chronic Cerebral Hypoperfusion?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Vascular dementia (VD) is defined as a progressive neurodegenerative disease of cognitive decline, attributable to cerebrovascular factors. Numerous studies have demonstrated that chronic cerebral hypoperfusion (CCH) is associated with the initiation and progression of VD and Alzheimer’s disease (AD). Suitable animal models were established to replicate such pathological condition in experimental research, which contributes largely to comprehending causal relationships between CCH and cognitive impairment. The most widely used experimental model of VD and CCH is permanent bilateral common carotid artery occlusion in rats. In CCH models, changes of learning and memory, cerebral blood flow (CBF), energy metabolism, and neuropathology initiated by ischemia were revealed. However, in order to achieve potential therapeutic targets, particular mechanisms in cognitive and neuropathological changes from CCH to dementia should be investigated. Recent studies have shown that hypoperfusion resulted in a chain of disruption of homeostatic interactions, including oxidative stress, neuroinflammation, neurotransmitter system dysfunction, mitochondrial dysfunction, disturbance of lipid metabolism, and alterations of growth factors. Evidence from experimental studies that elucidate the damaging effects of such imbalances suggests their critical roles in the pathogenesis of VD. The present review provides a summary of the achievements in mechanisms made with the CCH models, permits an understanding of the causative role played by CCH in VD, and highlights preventative and therapeutic prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

VD:

Vascular dementia

CBF:

Cerebral blood flow

AD:

Alzheimer’s disease

2VO:

Two-vessel occlusion

CCH:

Chronic cerebral hypoperfusion

WM:

White matter

1VO:

One-vessel occlusion

2VO:

Two-vessel occlusion

3VO:

Three-vessel occlusion

4VO:

Four-vessel occlusion

BCAS:

Bilateral common carotid artery stenosis

ROS:

Reactive oxygen species

O2−:

Superoxide anions

−OH:

Hydroxyl radical

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

4-HNE:

4-hydroxy-2-nonenal

8-OHdG:

8-hydroxy-deoxyguanosine

SOD:

superoxide dismutase

GPx:

Glutathione peroxidase

GST:

Glutahione-S-transferase

GR:

Glutathione reductase

NQO1:

NAD(P)H: Quinone Oxidoreductase1

GSH:

Glutathione

CNS:

Central nervous system

AA:

Ascorbic acid

Nox:

Nicotinamide adenine dinucleotide phosphate oxidase

Nrf2:

Nuclear factor-erythroid 2-related factor-2

HO-1:

Heme oxygenase-1

ARE:

Antioxidant response element

ERK:

Extracellular signal regulated kinase

RAS:

Rrenin-angiotensin system

AT1:

Angiotensin II type 1

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

Jak:

Janus kinases

STAT:

Signal transducers and activators of transcription

IL-1β:

Interleukin-1β

TNF-α:

Tumor necrosis factor-α

MCP-1:

Monocyte chemoattractant protein-1

NF-κB:

Nuclear factor-kappaB

TLR4:

Toll-like receptor 4

MyD88:

Myeloid differentiation factor 88

MAPK:

Mitogen-activated protein kinase

A1ARs:

A1 adenosine receptors

A2ARs:

A2 adenosine receptors

VCAM-1:

Vascular cell adhesion molecule 1

ICAM-1:

Intercellular adhesion molecule 1

MMP:

Matrix metalloproteinase

BBB:

Blood brain barrier

OPCs:

Oligodendrocyte precursor cells

Ach:

Acetylcholine

DA:

Dopamine

GABA:

Gamma-aminobutyric acid

ChAT:

Choline acetyltransferase

AChE:

Acetylcholinesterase

mACh-R:

Muscarinic acetylcholine receptor

GAD67:

Glutamic acid decarboxylase 67

EAAT2:

Excitatory amino acid transporters 2

TH:

Tyrosine hydroxylase

GABAR:

GABA receptor

NMDA:

N-methyl-D-aspartic acid

ATP:

Adenosine 5’-triphosphate

ADP:

Adenosine 5’-diphosphate

AMP:

Adenosine 5’-monophosphate

PDH:

Pyruvate dehydrogenase

ETC:

Electron transfer chain

RCI:

Respiratory control index

uFA:

Unesterified fatty acids

cPLA2:

Cytosolic phospholipase A2

sPLA2:

Secretory phospholipase A2

LXR-α:

Liver X receptor-α

RXR-α:

Retinoic X receptor-α

ABCA1:

ATP-binding cassette transporter

apo A1:

apolipoprotein A1

BDNF:

Brain derived neurotrophic factor

NGF:

Nerve growth factor

VEGF:

Vascular endothelial growth factor

IGF-1:

Insulin-like growth factor-1

PDGFα:

Platelet-derived growth factor-α

bFGF:

Basic fibroblast growth factor

References

  1. Rodriguez Garcia PL, Rodriguez Garcia D, Letter by Rodriguez-Garcia and Rodriguez-Garcia [corrected] regarding article (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42:e584

    Article  PubMed  Google Scholar 

  2. Sloane PD, Zimmerman S, Suchindran C et al (2002) The public health impact of Alzheimer’s disease, 2000–2050: potential implication of treatment advances. Annu Rev Public Health 23:213–231

    Article  PubMed  Google Scholar 

  3. Bowler JV (2005) Vascular cognitive impairment. J Neurol Neurosurg Psychiatry 76(Suppl 5):v35–v44

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sharp SI, Aarsland D, Day S, Sonnesyn H, Ballard C (2011) Hypertension is a potential risk factor for vascular dementia: systematic review. Int J Geriatr Psychiatry 26:661–669

    Article  PubMed  Google Scholar 

  5. Raffaitin C, Gin H, Empana JP et al (2009) Metabolic syndrome and risk for incident Alzheimer’s disease or vascular dementia: the Three-City Study. Diabetes Care 32:169–174

    Article  PubMed  PubMed Central  Google Scholar 

  6. Peters R (2012) Blood pressure, smoking and alcohol use, association with vascular dementia. Exp Gerontol 47:865–872

    Article  PubMed  Google Scholar 

  7. Venkat P, Chopp M, Chen J (2015) Models and mechanisms of vascular dementia. Exp Neurol 272:97–108

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roman GC, Tatemichi TK, Erkinjuntti T et al (1993) Vascular dementia: diagnostic criteria for research studies. Report NINDS-AIREN International Workshop. Neurol 43:250–260

  9. Rabe-Jablonska J, Bienkiewicz W (1994) Anxiety disorders in the fourth edition of the classification of mental disorders prepared by the American Psychiatric Association: diagnostic and statistical manual of mental disorders (DMS-IV—options book). Psychiatr Pol 28:255–268

    CAS  PubMed  Google Scholar 

  10. Chui HC, Victoroff JI, Margolin D et al (1992) Criteria for the diagnosis of ischemic vascular dementia proposed by the State of California Alzheimer’s Disease Diagnostic and Treatment Centers. Neurology 42:473–480

    Article  CAS  PubMed  Google Scholar 

  11. Jiwa NS, Garrard P, Hainsworth AH (2010) Experimental models of vascular dementia and vascular cognitive impairment: a systematic review. J Neurochem 115:814–828

    Article  CAS  PubMed  Google Scholar 

  12. Thong-asa K, Chompoopong S, Tantisira MH, Tilokskulchai K (2013) Reversible short-term and delayed long-term cognitive impairment induced by chronic mild cerebral hypoperfusion in rats. J Neural Transm (Vienna) 120:1225–1235

    Article  Google Scholar 

  13. Cheng P, Ren Y, Bai S et al (2015) Chronic cerebral ischemia induces downregulation of A1 adenosine receptors during white matter damage in adult mice. Cell Mol Neurobiol 35:1149–1156

    Article  CAS  PubMed  Google Scholar 

  14. Hecht N, Marushima A, Nieminen M et al (2015) Myoblast-mediated gene therapy improves functional collateralization in chronic cerebral hypoperfusion. Stroke 46:203–211

    Article  CAS  PubMed  Google Scholar 

  15. Ueno Y, Koike M, Shimada Y et al (2015) L-carnitine enhances axonal plasticity and improves white-matter lesions after chronic hypoperfusion in rat brain. J Cereb Blood Flow Metab 35:382–391

    Article  CAS  PubMed  Google Scholar 

  16. Srinivasan VJ, Yu E, Radhakrishnan H, Can A et al (2015) Micro-heterogeneity of flow in a mouse model of chronic cerebral hypoperfusion revealed by longitudinal Doppler optical coherence tomography and angiography. J Cereb Blood Flow Metab 35:1552–1560

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang EJ, Cai M, Lee JH (2015) Neuroprotective effects of electroacupuncture on an animal model of bilateral common carotid artery occlusion. Mol Neurobiol (2015 Dec 21)

  18. Hecht N, Schneider UC, Czabanka M et al (2014) Endothelial progenitor cells augment collateralization and hemodynamic rescue in a model of chronic cerebral ischemia. J Cereb Blood Flow Metab 34:1297–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Horecky J, Baciak L, Kasparova S et al (2009) Minimally invasive surgical approach for three-vessel occlusion as a model of vascular dementia in the rat-brain bioenergetics assay. J Neurol Sci 283:178–181

    Article  CAS  PubMed  Google Scholar 

  20. de la Torre JC, Butler K, Kozlowski P, Fortin T, Saunders JK (1995) Correlates between nuclear magnetic resonance spectroscopy, diffusion weighted imaging, and CA1 morphometry following chronic brain ischemia. J Neurosci Res 41:238–245

  21. Neto CJ, Paganelli RA, Benetoli A, Lima KC, Milani H (2005) Permanent, 3-stage, 4-vessel occlusion as a model of chronic and progressive brain hypoperfusion in rats: a neurohistological and behavioral analysis. Behav Brain Res 160:312–322

    Article  PubMed  Google Scholar 

  22. Hai J, Ding M, Guo Z, Wang B (2002) A new rat model of chronic cerebral hypoperfusion associated with arteriovenous malformations. J Neurosurg 97:1198–1202

    Article  PubMed  Google Scholar 

  23. Dong YF, Kataoka K, Toyama K et al (2011) Attenuation of brain damage and cognitive impairment by direct renin inhibition in mice with chronic cerebral hypoperfusion. Hypertension 58:635–642

    Article  CAS  PubMed  Google Scholar 

  24. Farkas E, Luiten PG, Bari F (2007) Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 54:162–180

    Article  CAS  PubMed  Google Scholar 

  25. Chen H, Yoshioka H, Kim GS et al (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14:1505–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luca M, Luca A, Calandra C (2015) The role of oxidative damage in the pathogenesis and progression of Alzheimer’s disease and vascular dementia. Oxid Med Cell Longev 2015:504678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. ElAli A, Theriault P, Prefontaine P, Rivest S (2013) Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation. Acta Neuropathol Commun 1:75

    Article  PubMed  PubMed Central  Google Scholar 

  28. He XL, Wang YH, Gao M et al (2009) Baicalein protects rat brain mitochondria against chronic cerebral hypoperfusion-induced oxidative damage. Brain Res 1249:212–221

    Article  CAS  PubMed  Google Scholar 

  29. Sayan-Ozacmak H, Ozacmak VH, Barut F, Jakubowska-Dogru E (2012) Rosiglitazone treatment reduces hippocampal neuronal damage possibly through alleviating oxidative stress in chronic cerebral hypoperfusion. Neurochem Int 61:287–290

    Article  CAS  PubMed  Google Scholar 

  30. Kim S, Kang IH, Nam JB et al (2015) Ameliorating the effect of astragaloside IV on learning and memory deficit after chronic cerebral hypoperfusion in rats. Molecules 20:1904–1921

    Article  PubMed  CAS  Google Scholar 

  31. Xi Y, Wang M, Zhang W et al (2014) Neuronal damage, central cholinergic dysfunction and oxidative damage correlate with cognitive deficits in rats with chronic cerebral hypoperfusion. Neurobiol Learn Mem 109:7–19

    Article  CAS  PubMed  Google Scholar 

  32. Lee JC, Won MH (2014) Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils. Anat Cell Biol 47:149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu X, Zhang B, Lu K et al. (2016) Prevention of hippocampal neuronal damage and cognitive function deficits in vascular dementia by dextromethorphan. Mol Neurobiol. doi:10.1007/s12035-016-9786-5

  34. Song X, Zhu W, An R, Li Y, Du Z (2015) Protective effect of Daming capsule against chronic cerebral ischemia. BMC Complement Altern Med 15:149

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mansoorali KP, Prakash T, Kotresha D et al (2012) Cerebroprotective effect of Eclipta alba against global model of cerebral ischemia induced oxidative stress in rats. Phytomedicine 19:1108–1116

    Article  CAS  PubMed  Google Scholar 

  36. Jin W, Jia Y, Huang L et al (2014) Lipoxin A4 methyl ester ameliorates cognitive deficits induced by chronic cerebral hypoperfusion through activating ERK/Nrf2 signaling pathway in rats. Pharmacol Biochem Behav 124:145–152

    Article  CAS  PubMed  Google Scholar 

  37. Gupta S, Singh P, Sharma BM, Sharma B (2015) Neuroprotective effects of agomelatine and vinpocetine against chronic cerebral hypoperfusion induced vascular dementia. Curr Neurovasc Res 12:240–252

    Article  CAS  PubMed  Google Scholar 

  38. Cechetti F et al (2012) Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat. Neurobiol Learn Mem 97(1):90–96

    Article  CAS  PubMed  Google Scholar 

  39. Zhao RR, Xu F, Xu XC et al (2015) Effects of alpha-lipoic acid on spatial learning and memory, oxidative stress, and central cholinergic system in a rat model of vascular dementia. Neurosci Lett 587:113–119

    Article  CAS  PubMed  Google Scholar 

  40. Ozacmak VH et al (2007) AT1 receptor blocker candesartan-induced attenuation of brain injury of rats subjected to chronic cerebral hypoperfusion. Neurochem Res 32(8):1314–1321

    Article  CAS  PubMed  Google Scholar 

  41. Xu Y, Zhang JJ, Xiong L et al (2010) Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress. J Nutr Biochem 21:741–748

    Article  CAS  PubMed  Google Scholar 

  42. Tsai TH, Sun CK, Su CH et al (2015) Sitagliptin attenuated brain damage and cognitive impairment in mice with chronic cerebral hypo-perfusion through suppressing oxidative stress and inflammatory reaction. J Hypertens 33:1001–1013

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Wu B, Nie K, Jia Y, Yu J (2014) Effects of acupuncture on declined cerebral blood flow, impaired mitochondrial respiratory function and oxidative stress in multi-infarct dementia rats. Neurochem Int 65:23–29

    Article  CAS  PubMed  Google Scholar 

  44. Korani MS, Farbood Y, Sarkaki A, Fathi Moghaddam H, Taghi Mansouri M (2014) Protective effects of gallic acid against chronic cerebral hypoperfusion-induced cognitive deficit and brain oxidative damage in rats. Eur J Pharmacol 733:62–67

    Article  CAS  PubMed  Google Scholar 

  45. Cechetti F, Worm PV, Lovatel G et al (2012) Environmental enrichment prevents behavioral deficits and oxidative stress caused by chronic cerebral hypoperfusion in the rat. Life Sci 91:29–36

    Article  CAS  PubMed  Google Scholar 

  46. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  47. Shi GX, Wang XR, Yan CQ et al (2015) Acupuncture elicits neuroprotective effect by inhibiting NAPDH oxidase-mediated reactive oxygen species production in cerebral ischaemia. Sci Rep 5:17981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choi DH, Lee KH, Kim JH et al (2014) NADPH oxidase 1, a novel molecular source of ROS in hippocampal neuronal death in vascular dementia. Antioxid Redox Signal 21:533–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu H, Zhang JJ, Li X et al (2015) Post-occlusion administration of sodium butyrate attenuates cognitive impairment in a rat model of chronic cerebral hypoperfusion. Pharmacol Biochem Behav 135:53–59

    Article  CAS  PubMed  Google Scholar 

  50. Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y (2005) Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett 579:3029–3036

    Article  CAS  PubMed  Google Scholar 

  51. Wang XR, Shi GX, Yang JW et al (2015) Acupuncture ameliorates cognitive impairment and hippocampus neuronal loss in experimental vascular dementia through Nrf2-mediated antioxidant response. Free Radic Biol Med 89:1077–1084

    Article  CAS  PubMed  Google Scholar 

  52. Rodriguez-Perez AI, Dominguez-Meijide A, Lanciego JL, Guerra MJ, Labandeira-Garcia JL (2013) Dopaminergic degeneration is enhanced by chronic brain hypoperfusion and inhibited by angiotensin receptor blockage. Age (Dordr) 35:1675–1690

    Article  CAS  Google Scholar 

  53. Fuchtemeier M, Brinckmann MP, Foddis M et al (2015) Vascular change and opposing effects of the angiotensin type 2 receptor in a mouse model of vascular cognitive impairment. J Cereb Blood Flow Metab 35:476–484

    Article  PubMed  CAS  Google Scholar 

  54. Rosenberg GA, Bjerke M, Wallin A (2014) Multimodal markers of inflammation in the subcortical ischemic vascular disease type of vascular cognitive impairment. Stroke 45:1531–1538

    Article  PubMed  PubMed Central  Google Scholar 

  55. Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16:358–372

    Article  CAS  PubMed  Google Scholar 

  56. Fakhoury M (2015) Role of immunity and inflammation in the pathophysiology of neurodegenerative diseases. Neurodegener Dis 15:63–69

    Article  CAS  PubMed  Google Scholar 

  57. Engelhart MJ, Geerlings MI, Meijer J et al (2004) Inflammatory proteins in plasma and the risk of dementia: the Rotterdam study. Arch Neurol 61:668–672

    Article  PubMed  Google Scholar 

  58. Wada-Isoe K, Wakutani Y, Urakami K, Nakashima K (2004) Elevated interleukin-6 levels in cerebrospinal fluid of vascular dementia patients. Acta Neurol Scand 110:124–127

    Article  CAS  PubMed  Google Scholar 

  59. Ceulemans AG, Zgavc T, Kooijman R et al (2010) The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J Neuroinflammation 7:74

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shichita T, Sakaguchi R, Suzuki M, Yoshimura A (2012) Post-ischemic inflammation in the brain. Front Immunol 3:132

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kim MS, Bang JH, Lee J et al (2016) Fructus mume ethanol extract prevents inflammation and normalizes the septohippocampal cholinergic system in a rat model of chronic cerebral hypoperfusion. J Med Food 19:196–204

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fu X, Zhang J, Guo L, Xu Y et al (2014) Protective role of luteolin against cognitive dysfunction induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav 126:122–130

    Article  CAS  PubMed  Google Scholar 

  63. Duan W et al (2009) Adenosine A2A receptor deficiency exacerbates white matter lesions and cognitive deficits induced by chronic cerebral hypoperfusion in mice. J Neurol Sci 285(1–2):39–45

    Article  CAS  PubMed  Google Scholar 

  64. Yoshizaki K, Adachi K, Kataoka S et al (2008) Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice. Exp Neurol 210:585–591

    Article  PubMed  Google Scholar 

  65. Kitamura A, Fujita Y, Oishi N et al (2012) Selective white matter abnormalities in a novel rat model of vascular dementia. Neurobiol Aging 33(1012):e1025–e1035

    Google Scholar 

  66. Hou X, Liang X, Chen JF, Zheng J (2015) Ecto-5′-nucleotidase (CD73) is involved in chronic cerebral hypoperfusion-induced white matter lesions and cognitive impairment by regulating glial cell activation and pro-inflammatory cytokines. Neuroscience 297:118–126

    Article  CAS  PubMed  Google Scholar 

  67. Lee KM, Bang J, Kim BY et al (2015) Fructus mume alleviates chronic cerebral hypoperfusion-induced white matter and hippocampal damage via inhibition of inflammation and downregulation of TLR4 and p38 MAPK signaling. BMC Complement Altern Med 15:125

    Article  PubMed  PubMed Central  Google Scholar 

  68. Reimer MM et al (2011) Rapid disruption of axon-glial integrity in response to mild cerebral hypoperfusion. J Neurosci 31(49):18185–18194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cai ZY, Yan Y, Chen R (2010) Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model. Neurosci Bull 26:28–36

    Article  CAS  PubMed  Google Scholar 

  70. Won JS, Kim J, Annamalai B et al (2013) Protective role of S-nitrosoglutathione (GSNO) against cognitive impairment in rat model of chronic cerebral hypoperfusion. J Alzheimers Dis 34:621–635

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Khan MB, Hoda MN, Vaibhav K et al (2015) Remote ischemic postconditioning: harnessing endogenous protection in a murine model of vascular cognitive impairment. Transl Stroke Res 6:69–77

    Article  PubMed  Google Scholar 

  72. Bjerke M, Zetterberg H, Edman A et al (2011) Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer’s disease. J Alzheimers Dis 27:665–676

    CAS  PubMed  Google Scholar 

  73. Narantuya D, Nagai A, Sheikh AM et al (2010) Microglia transplantation attenuates white matter injury in rat chronic ischemia model via matrix metalloproteinase-2 inhibition. Brain Res 1316:145–152

    Article  CAS  PubMed  Google Scholar 

  74. Choi SA, Kim EH, Lee JY et al (2007) Preconditioning with chronic cerebral hypoperfusion reduces a focal cerebral ischemic injury and increases apurinic/apyrimidinic endonuclease/redox factor-1 and matrix metalloproteinase-2 expression. Curr Neurovasc Res 4:89–97

    Article  CAS  PubMed  Google Scholar 

  75. Nakaji K, Ihara M, Takahashi C et al (2006) Matrix metalloproteinase-2 plays a critical role in the pathogenesis of white matter lesions after chronic cerebral hypoperfusion in rodents. Stroke 37:2816–2823

    Article  CAS  PubMed  Google Scholar 

  76. Seo JH, Miyamoto N, Hayakawa K et al (2013) Oligodendrocyte precursors induce early blood–brain barrier opening after white matter injury. J Clin Invest 123:782–786

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Stasiak A, Mussur M, Unzeta M et al (2014) Effects of novel monoamine oxidases and cholinesterases targeting compounds on brain neurotransmitters and behavior in rat model of vascular dementia. Curr Pharm Des 20:161–171

    Article  CAS  PubMed  Google Scholar 

  78. Li CJ, Lu Y, Zhou M et al (2014) Activation of GABAB receptors ameliorates cognitive impairment via restoring the balance of HCN1/HCN2 surface expression in the hippocampal CA1 area in rats with chronic cerebral hypoperfusion. Mol Neurobiol 50:704–720

    Article  PubMed  CAS  Google Scholar 

  79. Yatomi Y, Tanaka R, Shimura H et al (2013) Chronic brain ischemia induces the expression of glial glutamate transporter EAAT2 in subcortical white matter. Neuroscience 244:113–121

    Article  CAS  PubMed  Google Scholar 

  80. Ni JW, Matsumoto K, Li HB, Murakami Y, Watanabe H (1995) Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat. Brain Res 673:290–296

    Article  CAS  PubMed  Google Scholar 

  81. Ouchi Y, Tsukada H, Kakiuchi T, Nishiyama S, Futatsubashi M (1998) Changes in cerebral blood flow and postsynaptic muscarinic cholinergic activity in rats with bilateral carotid artery ligation. J Nucl Med 39:198–202

  82. Murakami Y, Zhao Q, Harada K et al (2005) Choto-san, a Kampo formula, improves chronic cerebral hypoperfusion-induced spatial learning deficit via stimulation of muscarinic M1 receptor. Pharmacol Biochem Behav 81:616–625

    Article  CAS  PubMed  Google Scholar 

  83. Tanaka K, Ogawa N, Asanuma M, Kondo Y, Nomura M (1996) Relationship between cholinergic dysfunction and discrimination learning disabilities in Wistar rats following chronic cerebral hypoperfusion. Brain Res 729:55–65

    Article  CAS  PubMed  Google Scholar 

  84. Zhao Q, Murakami Y, Tohda M et al (2007) Chotosan, a kampo formula, ameliorates chronic cerebral hypoperfusion-induced deficits in object recognition behaviors and central cholinergic systems in mice. J Pharmacol Sci 103:360–373

    Article  CAS  PubMed  Google Scholar 

  85. Kondo Y, Ogawa N, Asanuma M et al (1996) Preventive effects of bifemelane hydrochloride on decreased levels of muscarinic acetylcholine receptor and its mRNA in a rat model of chronic cerebral hypoperfusion. Neurosci Res 24:409–414

    Article  CAS  PubMed  Google Scholar 

  86. Vizi ES, Kiss JP (1998) Neurochemistry and pharmacology of the major hippocampal transmitter systems: synaptic and nonsynaptic interactions. Hippocampus 8:566–607

    Article  CAS  PubMed  Google Scholar 

  87. Long Q, Hei Y, Luo Q et al (2015) BMSCs transplantation improves cognitive impairment via up-regulation of hippocampal GABAergic system in a rat model of chronic cerebral hypoperfusion. Neuroscience 311:464–473

    Article  CAS  PubMed  Google Scholar 

  88. Huang L, Zhao LB, Yu ZY et al (2014) Long-term inhibition of Rho-kinase restores the LTP impaired in chronic forebrain ischemia rats by regulating GABAA and GABAB receptors. Neuroscience 277:383–391

    Article  CAS  PubMed  Google Scholar 

  89. Zhang N, Miyamoto N, Tanaka R et al (2009) Activation of tyrosine hydroxylase prevents pneumonia in a rat chronic cerebral hypoperfusion model. Neuroscience 158:665–672

    Article  CAS  PubMed  Google Scholar 

  90. Wan P, Wang S, Zhang Y, Lv J, Jin QH (2014) Involvement of dopamine D1 receptors of the hippocampal dentate gyrus in spatial learning and memory deficits in a rat model of vascular dementia. Pharmazie 69:709–710

    CAS  PubMed  Google Scholar 

  91. Farkas E et al (2002) Dietary long chain PUFAs differentially affect hippocampal muscarinic 1 and serotonergic 1A receptors in experimental cerebral hypoperfusion. Brain Res 954(1):32–41

    Article  CAS  PubMed  Google Scholar 

  92. Chen YD, Zhang J, Wang Y, Yuan JL, Hu WL (2016) Efficacy of Cholinesterase Inhibitors in Vascular Dementia: An Updated Meta-Analysis. Eur Neurol 75:132–141

  93. Plaschke K, Sommer C, Schroeck H et al (2005) A mouse model of cerebral oligemia: relation to brain histopathology, cerebral blood flow, and energy state. Exp Brain Res 162:324–331

    Article  PubMed  Google Scholar 

  94. Ueda M, Muramatsu H, Kamiya T et al (2000) Pyruvate dehydrogenase activity and energy metabolite levels following bilateral common carotid artery occlusion in rat brain. Life Sci 67:821–826

    Article  CAS  PubMed  Google Scholar 

  95. Benkhalifa M, Ferreira YJ, Chahine H et al (2014) Mitochondria: participation to infertility as source of energy and cause of senescence. Int J Biochem Cell Biol 55:60–64

    Article  CAS  PubMed  Google Scholar 

  96. van Vliet AR, Verfaillie T, Agostinis P (2014) New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta 1843:2253–2262

    Article  PubMed  CAS  Google Scholar 

  97. Weinberg SE, Sena LA, Chandel NS (2015) Mitochondria in the regulation of innate and adaptive immunity. Immunity 42:406–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jian H, Yi-Fang W, Qi L, Xiao-Song H, Gui-Yun Z (2013) Cerebral blood flow and metabolic changes in hippocampal regions of a modified rat model with chronic cerebral hypoperfusion. Acta Neurol Belg 113:313–317

    Article  PubMed  Google Scholar 

  99. Du J, Ma M, Zhao Q et al (2013) Mitochondrial bioenergetic deficits in the hippocampi of rats with chronic ischemia-induced vascular dementia. Neuroscience 231:345–352

    Article  CAS  PubMed  Google Scholar 

  100. Li H, Liu Y, Lin LT et al (2016) Acupuncture reversed hippocampal mitochondrial dysfunction in vascular dementia rats. Neurochem Int 92:35–42

    Article  CAS  PubMed  Google Scholar 

  101. Liu Q, Zhang J (2014) Lipid metabolism in Alzheimer’s disease. Neurosci Bull 30:331–345

    Article  PubMed  CAS  Google Scholar 

  102. Palsdottir H, Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666:2–18

    Article  CAS  PubMed  Google Scholar 

  103. Klopfenstein DR, Tomishige M, Stuurman N, Vale RD (2002) Role of phosphatidylinositol (4,5) bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109:347–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Giannopoulos PF, Joshi YB, Pratico D (2014) Novel lipid signaling pathways in Alzheimer’s disease pathogenesis. Biochem Pharmacol 88:560–564

    Article  CAS  PubMed  Google Scholar 

  105. Muralikrishna Adibhatla R, Hatcher JF (2006) Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med 40:376–387

    Article  CAS  PubMed  Google Scholar 

  106. Kang J, Rivest S (2012) Lipid metabolism and neuroinflammation in Alzheimer’s disease: a role for liver X receptors. Endocr Rev 33:715–746

    Article  CAS  PubMed  Google Scholar 

  107. Wang Q, Yan J, Chen X et al (2011) Statins: multiple neuroprotective mechanisms in neurodegenerative diseases. Exp Neurol 230:27–34

    Article  CAS  PubMed  Google Scholar 

  108. Bazan NG (2005) Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol Neurobiol 32:89–103

    Article  CAS  PubMed  Google Scholar 

  109. Yu H, Bi Y, Ma W et al (2010) Long-term effects of high lipid and high energy diet on serum lipid, brain fatty acid composition, and memory and learning ability in mice. Int J Dev Neurosci 28:271–276

    Article  CAS  PubMed  Google Scholar 

  110. Toyran N, Zorlu F, Donmez G, Oge K, Severcan F (2004) Chronic hypoperfusion alters the content and structure of proteins and lipids of rat brain homogenates: a Fourier transform infrared spectroscopy study. Eur Biophys J 33:549–554

    Article  CAS  PubMed  Google Scholar 

  111. Toyran N, Zorlu F, Severcan F (2005) Effect of stereotactic radiosurgery on lipids and proteins of normal and hypoperfused rat brain homogenates: a Fourier transform infrared spectroscopy study. Int J Radiat Biol 81:911–918

  112. Aytac E, Seymen HO, Uzun H, Dikmen G, Altug T (2006) Effects of iloprost on visual evoked potentials and brain tissue oxidative stress after bilateral common carotid artery occlusion. Prostaglandins Leukot Essent Fatty Acids 74:373–378

    Article  CAS  PubMed  Google Scholar 

  113. Lee CH, Park JH, Yoo KY et al (2011) Pre- and post-treatments with escitalopram protect against experimental ischemic neuronal damage via regulation of BDNF expression and oxidative stress. Exp Neurol 229:450–459

    Article  CAS  PubMed  Google Scholar 

  114. Moghe A, Ghare S, Lamoreau B et al (2015) Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci 143:242–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Adibhatla RM, Hatcher JF, Dempsey RJ (2003) Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Signal 5:647–654

    Article  CAS  PubMed  Google Scholar 

  116. Miura T (2015) The peroxidase activity of ADM-Fe(3+) cooperates with lipid peroxidation: the participation of hydroperoxide and hydroxyl radicals in the damage to proteins and DNA. Chem Biol Interact 236:67–73

    Article  CAS  PubMed  Google Scholar 

  117. Narovlianskaia SE, Elistratova NA (1985) Role of phospholipase A2 in regulating lipid peroxidation and the respiratory chain in experimental tuberculosis. Probl Tuberk 8:59–63

    Google Scholar 

  118. Xu X, Pan Y, Wang X (2004) Alterations in the expression of lipid and mechano-gated two-pore domain potassium channel genes in rat brain following chronic cerebral ischemia. Brain Res Mol Brain Res 120:205–209

    Article  CAS  PubMed  Google Scholar 

  119. Bhattacharjee AK, White L, Chang L et al (2012) Bilateral common carotid artery ligation transiently changes brain lipid metabolism in rats. Neurochem Res 37:1490–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72:137–174

    Article  CAS  PubMed  Google Scholar 

  121. Wang L, Zhang X, Lu Y, Tian M, Li Y (2014) Dynamic changes of Apo A1 mediated by LXR/RXR/ABCA1 pathway in brains of the aging rats with cerebral hypoperfusion. Brain Res Bull 100:84–92

    Article  CAS  PubMed  Google Scholar 

  122. Zelcer N, Khanlou N, Clare R et al (2007) Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc Natl Acad Sci U S A 104:10601–10606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Masi G, Brovedani P (2011) The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression. CNS Drugs 25:913–931

    Article  CAS  PubMed  Google Scholar 

  124. Hallbook F, Wilson K, Thorndyke M, Olinski RP (2006) Formation and evolution of the chordate neurotrophin and Trk receptor genes. Brain Behav Evol 68:133–144

    Article  PubMed  Google Scholar 

  125. Pezet S, Malcangio M (2004) Brain-derived neurotrophic factor as a drug target for CNS disorders. Expert Opin Ther Targets 8:391–399

    Article  CAS  PubMed  Google Scholar 

  126. Gray JD, Milner TA, McEwen BS (2013) Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors. Neuroscience 239:214–227

    Article  CAS  PubMed  Google Scholar 

  127. Tonchev AB (2011) Brain ischemia, neurogenesis, and neurotrophic receptor expression in primates. Arch Ital Biol 149:225–231

    PubMed  Google Scholar 

  128. Kermani P, Hempstead B (2007) Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc Med 17:140–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Larsson E, Nanobashvili A, Kokaia Z, Lindvall O (1999) Evidence for neuroprotective effects of endogenous brain-derived neurotrophic factor after global forebrain ischemia in rats. J Cereb Blood Flow Metab 19:1220–1228

    Article  CAS  PubMed  Google Scholar 

  130. Mattson MP, Maudsley S, Martin B (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 27:589–594

    Article  CAS  PubMed  Google Scholar 

  131. Kokaia Z, Zhao Q, Kokaia M et al (1995) Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp Neurol 136:73–88

    Article  CAS  PubMed  Google Scholar 

  132. Kokaia Z, Nawa H, Uchino H et al (1996) Regional brain-derived neurotrophic factor mRNA and protein levels following transient forebrain ischemia in the rat. Brain Res Mol Brain Res 38:139–144

    Article  CAS  PubMed  Google Scholar 

  133. Lindvall O, Ernfors P, Bengzon J et al (1992) Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc Natl Acad Sci U S A 89:648–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schmidt-Kastner R, Truettner J, Lin B et al (2001) Transient changes of brain-derived neurotrophic factor (BDNF) mRNA expression in hippocampus during moderate ischemia induced by chronic bilateral common carotid artery occlusions in the rat. Brain Res Mol Brain Res 92:157–166

    Article  CAS  PubMed  Google Scholar 

  135. Lee TH, Yang JT, Kato H, Wu JH, Chen ST (2004) Expression of brain-derived neurotrophic factor immunoreactivity and mRNA in the hippocampal CA1 and cortical areas after chronic ischemia in rats. J Neurosci Res 76:705–712

    Article  CAS  PubMed  Google Scholar 

  136. Marti HJ, Bernaudin M, Bellail A et al (2000) Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156:965–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wu X, Sun J, Zhang X et al (2014) Epigenetic signature of chronic cerebral hypoperfusion and beneficial effects of S-adenosylmethionine in rats. Mol Neurobiol 50:839–851

    Article  CAS  PubMed  Google Scholar 

  138. Wang F, Chang G, Geng X (2014) NGF and TERT co-transfected BMSCs improve the restoration of cognitive impairment in vascular dementia rats. PLoS One 9:e98774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Wang J, Fu X, Yu L et al (2015) Preconditioning with VEGF enhances angiogenic and neuroprotective effects of bone marrow mononuclear cell transplantation in a rat model of chronic cerebral hypoperfusion. Mol Neurobiol (2015 Nov 3)

  140. Kusaka N, Sugiu K, Tokunaga K et al (2005) Enhanced brain angiogenesis in chronic cerebral hypoperfusion after administration of plasmid human vascular endothelial growth factor in combination with indirect vasoreconstructive surgery. J Neurosurg 103:882–890

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 81303122 and no. 81473501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cun-Zhi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, SQ., Wang, XR., Xiao, LY. et al. Molecular Mechanisms of Vascular Dementia: What Can Be Learned from Animal Models of Chronic Cerebral Hypoperfusion?. Mol Neurobiol 54, 3670–3682 (2017). https://doi.org/10.1007/s12035-016-9915-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9915-1

Keywords

Navigation