Skip to main content

Advertisement

Log in

A mouse model of cerebral oligemia: relation to brain histopathology, cerebral blood flow, and energy state

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

An animal model involving stepwise occlusion of the common carotid arteries (sCCAO) in DBA/2 mice is presented in which the right and left carotid arteries were permanently ligated within a time interval of four weeks. Thereafter, cerebral functional and structural parameters were determined at acute (15 min) and subchronic (1 day; 3, 7, and 14 days) time points after sCCAO. Quantitative changes in regional cerebral blood flow (rCBF) as determined by the [14C]iodoantipyrine method, energy state (ATP, phosphocreatine, ADP, AMP, adenosine) as shown by HPLC, brain histopathology, and neuronal densities were measured in both hemispheres. Acute sCCAO was accompanied by a drastic reduction in cerebral energy-rich phosphate concentrations, ATP and phosphocreatine, and in rCBF of more than 50%. In contrast, cortical adenosine increased around five-fold. Subchronic sCCAO, however, was associated with normalization in brain energy metabolites and near-complete restoration of rCBF, except in the caudate nucleus (−40%). No marked signs of necrotic or apoptotic cell destruction were detected. Thus, during the subchronic period, compensatory mechanisms are induced to counteract the drastic changes seen after acute vessel occlusion. In conclusion, this sCCAO mouse model may be useful for long-lasting investigations of stepwise deterioration contributing to chronic cerebrovascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barone PC, Knudsen DJ, Nelson AH, Feuerstein GZ, Willette RN (1993) Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy. J Cerebr Blood F Met 13:683–692

    CAS  Google Scholar 

  • Busch HJ, Buschmann IR, Mies G, Bode C, Hossmann KA (2003) Arteriogenesis in hypoperfused rat brain. J Cerebr Blood F Met 23:621–628

    Article  Google Scholar 

  • Coyle P, Panzenbeck MJ (1990) Collateral development after artery occlusion in Fisher 344 rats. Stroke 21:316–321

    CAS  PubMed  Google Scholar 

  • de la Torre JC (1997) Hemodynamic consequences of deformed microvessels in the brain in Alzheimer’s disease. Ann N Y Acad Sci 826:75–91

    PubMed  Google Scholar 

  • Eklöf B, Siesjö BK (1972) The effect of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain. Acta Physiol Scand 86:155–165

    PubMed  Google Scholar 

  • Erecinska, M, Silver, IA (1989) ATP and brain function. J Cereb Blood F Met 9:2–19

    CAS  Google Scholar 

  • Frerichs KU, Kennedy C, Sokoloff L, Hallenbeck JM (1994) Local cerebral blood flow during hibernation, a model of natural tolerance to ‘cerebral ischemia’. J Cereb Blood F Met 14:193–205

    CAS  Google Scholar 

  • Fujii M, Hara H, Meng W, Vonsattel JP, Huang Z, Moskowitz MA (1997) Strain-related differences in susceptibility to transient forebrain ischemia in SV-129 and C57Black/6 mice. Stroke 28:1805–1811

    CAS  PubMed  Google Scholar 

  • Glazier SS, O’Rourke DM, Graham DI, Welsh FA (1994) Induction of ischemic tolerance following brief focal ischemia in rat brain. J Cereb Blood F Met 14:545–553

    CAS  Google Scholar 

  • Henderson RD, Eliasziw M, Fox AJ, Rothwell PM, Barnett HJM (2000) Angiographically defined collateral circulation and risk of stroke in patients with severe carotid artery stenosis. Stroke 31:128–132

    CAS  PubMed  Google Scholar 

  • Izumi N, Yasuda H: A convenient cerebral ischemic model using mice (1983) J Cereb Blood F Met 3:S391–S392

    Google Scholar 

  • Jay TM, Lucignani G, Crane AM, Jehle J, Sokoloff L (1988) Measurement of local cerebral blood flow with [14C]iodoantipyrine in the mouse. J Cereb Blood F Met 8:121–129

    CAS  Google Scholar 

  • Kaliszewski C, Fernandez LA, Wicke JD (1988) Differences in mortality rate between abrupt and progressive carotid ligation in the gerbil: role of endogenous angiotensin II. J Cerebr Blood F Met 8:149–154

    CAS  Google Scholar 

  • Kirsch JR, D’Alecy LG (1979) Effect of altered availability of energy-yielding substrates upon survival from hypoxia in mice. Stroke 10:288–291

    CAS  PubMed  Google Scholar 

  • Kirino T, Tsujita Y, Tamura A (1991) Induced tolerance to ischemia in gerbil hippocampal neurons. J Cerebr Blood F Met 11:299–307

    CAS  Google Scholar 

  • Kitagawa K, Matsumoto M, Yang G, Mabuchi T, Yagita Y, Hori M, Yanagihara T (1998) Cerebral ischemia after bilateral carotid artery occlusion and intraluminal suture occlusion in mice: evaluation of the patency of the posterior communicating artery. J Cerebr Blood F Met 18:570–579

    Article  CAS  Google Scholar 

  • MacMillan V, Judge D, Wisemann A, Settles D, Swain J, Davis J (1993) Mice expressing a bovine basic fibroblast growth factor transgene in the brain showed increased resistance to hypoxic-ischemic cerebral damage. Stroke 24:1735–1739

    CAS  PubMed  Google Scholar 

  • Murakami K, Kondo T, Kawase M, Chan PH (1998) The development of a new mouse model of global ischemia: focus on the relationships between ischemia duration, anesthesia, cerebral vasculature, and neuronal injury following global ischemia in mice. Brain Res 780:304–310

    Article  CAS  PubMed  Google Scholar 

  • Nakano S, Kato H, Kogure K (1989) Neuronal damage in the rat hippocampus in a new model of repeated reversible transient cerebral ischemia. Brain Res 490:178–180

    Article  CAS  PubMed  Google Scholar 

  • Pappas BA, de la Torre JC, Davidson CM, Keyes MT, Fortin T (1996) Chronic reduction of cerebral blood flow in the adult rat: late-emerging CA1 cell loss and memory dysfunction. Brain Res 708:50–58

    Article  CAS  PubMed  Google Scholar 

  • Phillis JW, Smith-Barbour M, O’Reagan MH, Perkins LM (1994) Amino acid and purine release in rat brain following temporary middle cerebral artery occlusion. Neurochem Res 19:1125–1130

    CAS  PubMed  Google Scholar 

  • Plaschke K (2004) Aspects of ageing in chronic cerebral oligaemia. Mechanisms of degeneration and compensation in rat models 2004. J Neural Transm (in press)

  • Plaschke K, Yun SW, Martin E, Hoyer S, Bardenheuer HJ (1999) Interrelation between cerebral energy metabolism and rat behaviour in a rat model of permanent brain vessel occlusion. Brain Res 830:320–329

    Article  CAS  PubMed  Google Scholar 

  • Plaschke K, Weigand MA, Michel A, Martin E, Bardenheuer HJ (2000) Permanent cerebral hypoperfusion: ‘preconditioning-like’ effects on rat energy metabolism towards acute systemic hypotension. Brain Res 858:363–370

    Article  CAS  PubMed  Google Scholar 

  • Plaschke K, Sommer C, Fahrner A, Amann K, Bardenheuer HJ, Knauth M (2003) Pronounced arterial collateralization was induced after permanent rat cerebral four-vessel occlusion. Relation to cerebral blood flow and neuropathology. J Neural Transm 110:719–32

    CAS  PubMed  Google Scholar 

  • Rebel A, Ulatowski JA, Joung K, Bucci E, Traystman RJ, Koehler RC (2002) Regional cerebral blood flow in cats with cross-linked hemoglobin transfusion during focal cerebral ischemia. Am J Physiol–Heart C 282:H832–H841

    Google Scholar 

  • Sakurada O, Sokoloff L, Jacquet YF (1978) Local cerebral glucose utilization following injection of beta-endorphin into periaqueductal gray matter in the rat. Brain Res 153:403–407

    Article  CAS  PubMed  Google Scholar 

  • Schaser KD, Settmacher U, Puhl G, Zhang L, Mittlmeier T, Stover JF, Vollmar B, Menger MD, Neuhaus P, Haas NP (2003) Noninvasive analysis of conjunctival microcirculation during carotid artery surgery reveals microvascular evidence of collateral compensation and stenosis-dependent adaptation. J Vasc Surg 37:789–797

    Article  PubMed  Google Scholar 

  • Sheng H, Laskowitz DT, Pearlstein RD, Warner DS (1999) Characterization of a recovery global cerebral ischemia model in the mouse. J Neurosci Meth 88:103–109

    Article  CAS  Google Scholar 

  • Sommer C, Fahrner A, Kiessling M (2002) [3H] muscimol binding to gamma-aminobutyric acid (A) receptors is upregulated in CA1 neurons of the gerbil hippocampus in the ischemia-tolerant state. Stroke 33:1698–1705

    Article  CAS  PubMed  Google Scholar 

  • Steen PA, Michenfelder JD (1978) Cerebral protection with barbiturates: relation to anesthetic effect. Stroke 9:140–142

    CAS  PubMed  Google Scholar 

  • Tachibana H, Meyer JS, Kitagawa Y, Tanahashi N, Kandula P, Rogers RL (1985) Xenon contrast CT-CBF measurements in parkinsonism and normal aging. J Am Geriatr Soc 33:413–421

    CAS  PubMed  Google Scholar 

  • Terashima T, Shobu S, Hoshimaru M, Uemura Y, Kikuchi H, Hashimoto N (1998) Consistent injury in the striatum of C57BL/6 mice after transient bilateral common carotid artery occlusion. Neurosurgery 43:900–907

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Hashimoto T, Furuya E, Tagawa K, Kitagawa K, Matsumoto M, Yoneda S, Kimura K, Kamada T (1988) Changes in aerobic and anaerobic ATP-synthesizing activities in hypoxic mouse brain. J Biochem 104:81–86

    CAS  PubMed  Google Scholar 

  • Welsh FA, Sakamoto T, McKee AE, Sims RE (1987) Effect of lactacidosis on pyridine nucleotide stability during ischemia in mouse brain. J Neurochem 49:846–851

    CAS  PubMed  Google Scholar 

  • Wu C, Zhan RZ, Qi S, Fujihara H, Taga K, Shimoji K (2001) A forebrain ischemic preconditioning model established in C57Black/Crj6 mice. J Neurosci Meth 107:101–106

    Article  CAS  Google Scholar 

  • Yang G, Kitagawa K, Matsushita K, Mabuchi T, Yagita Y, Yanagihara T, Matsumoto M (1997) C57BL/6 strain is most susceptible to cerebral ischemia following bilateral common carotid occlusion among seven mouse strains: selective neuronal death in the murine transient forebrain ischemia. Brain Res 752:209–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Roland Galmbacher, Stephan Hennes, Sigrid Kirchmeier, and Sebastian Hennig for their excellent technical assistance. This study was supported in part by the Medical Faculty of the University of Heidelberg (Forschungsschwerpunkt Geriatrie).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstanze Plaschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaschke, K., Sommer, C., Schroeck, H. et al. A mouse model of cerebral oligemia: relation to brain histopathology, cerebral blood flow, and energy state. Exp Brain Res 162, 324–331 (2005). https://doi.org/10.1007/s00221-004-2177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2177-6

Keywords

Navigation