Skip to main content
Log in

Chronic Cerebral Ischemia Induces Downregulation of A1 Adenosine Receptors During White Matter Damage in Adult Mice

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The role of A1 adenosine receptors (A1ARs) in the white matter under chronic cerebral ischemic conditions remains unclear. Here, we used right unilateral common carotid artery occlusion (rUCCAO) to construct a chronic cerebral ischemic mouse model. A1AR expression and proteolipid protein (PLP, a marker of white matter myelination) in the corpus callosum were observed by immunoreaction and immunohistochemistry, respectively. Pro-inflammatory interleukin-1β (IL-1β) and anti-inflammatory interleukin-10 (IL-10) levels were determined by ELISA. The Morris water maze test was employed to detect cognitive impairment. A1AR expression significantly decreased in the rUCCAO group as compared with the sham control group on weeks 2, 4, and 6, respectively. IL-10 levels in the rUCCAO group significantly declined on week 6, while there was no significant change in IL-1β expression. PLP expression significantly decreased in the rUCCAO group on weeks 2, 4, and 6. Moreover, latency time for the Morris water maze test significantly increased in the rUCCAO group on weeks 4 and 6, while the number of platform location crossing significantly decreased in the rUCCAO group on weeks 2, 4, and 6. In conclusion, this study provides the first evidence that chronic cerebral ischemia appears to induce A1AR downregulation and inhibition of IL-10 production, which may play key roles in the neuropathological mechanisms of ischemic white matter lesions. These data will facilitate future studies in formulating effective therapeutic strategies for ischemic white matter lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akbarian S, Kim JJ, Pothin SG, Hetrick WP, Bunney WE, Jones EG (1996) Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry 53(5):425–436

    Article  CAS  PubMed  Google Scholar 

  • Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J (2010) Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci 107(7):3228–3233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barker R, Wellington D, Esiri MM, Love S (2013) Assessing white matter ischemic damage in dementia patients by measurement of myelin proteins. J Cereb Blood Flow Metab 33(7):1050–1057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bodles AM, Barger SW (2004) Cytokines and the aging brain—what we don’t know might help us. Trends Neurosci 27(10):621–626. doi:10.1016/j.tins.2004.07.011

    Article  CAS  PubMed  Google Scholar 

  • Boyd ZS, Kriatchko A, Yang J, Agarwal N, Wax MB, Patil RV (2003) Interleukin-10 receptor signaling through STAT-3 regulates the apoptosis of retinal ganglion cells in response to stress. Invest Ophthalmol Vis Sci 44(12):5206–5211

    Article  PubMed  Google Scholar 

  • Brandeis R, Brandys Y, Yehuda S (1989) The use of the Morris water maze in the study of memory and learning. Int J Neurosci 48(1–2):29–69

    Article  CAS  PubMed  Google Scholar 

  • Braun PE (1984) Molecular organization of myelin. In: Morell P (ed) Myelin, Plenum publishing Corp., New York, pp 97–116

    Chapter  Google Scholar 

  • Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1–A2A receptor heteromers. J Neurosci 26(7):2080–2087

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA (2005) Neuroprotection by adenosine in the brain: from A1 receptor activation to A2A receptor blockade. Purinergic Signal 1(2):111–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36(1):60–90

    Article  PubMed  Google Scholar 

  • Deng Y, Lu J, Sivakumar V, Ling EA, Kaur C (2008) Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats. Brain Pathol 18(3):387–400

    Article  CAS  PubMed  Google Scholar 

  • Eng LF, Chao F-C, Gerstl B, Pratt DR, Tavaststjerna M (1968) Maturation of human white matter myelin. Fractionation of the myelin membrane proteins. Biochemistry 7(12):4455–4465

    Article  CAS  PubMed  Google Scholar 

  • Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication Does the corpus callosum enable the human condition? Brain 123(7):1293–1326

    Article  PubMed  Google Scholar 

  • Gebicke-Haerter PJ, Christoffel F, Timmer J, Northoff H, Berger M, van Calker D (1996) Both adenosine A1-and A2-receptors are required to stimulate microglial proliferation. Neurochem Int 29(1):37–42

    Article  CAS  PubMed  Google Scholar 

  • Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta (BBA) 1808(5):1380–1399

    Article  CAS  Google Scholar 

  • Hasko G, Szabo C, Németh ZH, Kvetan V, Pastores S, Vizi ES (1996) Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol 157(10):4634–4640

    CAS  PubMed  Google Scholar 

  • Haskó G, Pacher P, Sylvester Vizi E, Illes P (2005) Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci 26(10):511–516

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, Power C (2001) Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol 49(5):650–658

    Article  CAS  PubMed  Google Scholar 

  • Kelz MB, Chen J, Carlezon WA, Whisler K, Gilden L, Beckmann AM, Steffen C, Zhang Y-J, Marotti L, Self DW (1999) Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature 401(6750):272–276

    Article  CAS  PubMed  Google Scholar 

  • Kutzelnigg A, Lassmann H (2006) Cortical demyelination in multiple sclerosis: a substrate for cognitive deficits? J Neurol Sci 245(1):123–126

    Article  PubMed  Google Scholar 

  • Lees MB, Brostoff SW (1984) Proteins of myelin. In: Morell P (ed) Myelin, Plenum publishing Corp., New York, pp 197–224

    Chapter  Google Scholar 

  • Molina-Holgado F, Grencis R, Rothwell NJ (2001) Actions of exogenous and endogenous IL-10 on glial responses to bacterial LPS/cytokines. Glia 33(2):97–106

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  • Olah ME, Stiles GL (1995) Adenosine receptor subtypes: characterization and therapeutic regulation. Annu Rev Pharmacol Toxicol 35(1):581–606

    Article  CAS  PubMed  Google Scholar 

  • Othman T, Yan H, Rivkees SA (2003) Oligodendrocytes express functional A1 adenosine receptors that stimulate cellular migration. Glia 44(2):166–172

    Article  PubMed  Google Scholar 

  • Palmer T, Stiles G (1995) Adenosine receptors. Neuropharmacology 34(7):683–694

    Article  CAS  PubMed  Google Scholar 

  • Pantoni L, Garcia JH (1997) Pathogenesis of leukoaraiosis a review. Stroke 28(3):652–659

    Article  CAS  PubMed  Google Scholar 

  • Raine CS (1984) Morphology of myelin and myelination. In: Morell P (ed) Myelin, Plenum publishing Corp., New York, pp 1–50

    Chapter  Google Scholar 

  • Rodriguez-Yanez M, Castillo J (2008) Role of inflammatory markers in brain ischemia. Curr Opin Neurol 21(3):353–357. doi:10.1097/WCO.0b013e3282ffafbf

    Article  CAS  PubMed  Google Scholar 

  • Rodts-Palenik S, Wyatt-Ashmead J, Pang Y, Thigpen B, Cai Z, Rhodes P, Martin JN, Granger J, Bennett WA (2004) Maternal infection-induced white matter injury is reduced by treatment with interleukin-10. Am J Obstet Gynecol 191(4):1387–1392

    Article  CAS  PubMed  Google Scholar 

  • Roman GC (2004) Brain hypoperfusion: a critical factor in vascular dementia. Neurol Res 26(5):454–458. doi:10.1179/016164104225017686

    Article  PubMed  Google Scholar 

  • Román GC, Erkinjuntti T, Wallin A, Pantoni L, Chui HC (2002) Subcortical ischaemic vascular dementia. Lancet Neurol 1(7):426–436

    Article  PubMed  Google Scholar 

  • Strle K, Zhou J-H, Shen W-H, Broussard SR, Johnson RW, Freund GG, Dantzer R, Kelley KW (2001) lnterleukin-10 in the brain. Crit Rev Immunol 21(5):427–449

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Ma J, Tanaka KF, Takao K, Komada M, Tanda K, Suzuki A, Ishibashi T, Baba H, Isa T (2009) Mice with altered myelin proteolipid protein gene expression display cognitive deficits accompanied by abnormal neuron–glia interactions and decreased conduction velocities. J Neurosci 29(26):8363–8371

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui S, Schnermann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, Warren K, Power C (2004) A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 24(6):1521–1529

    Article  CAS  PubMed  Google Scholar 

  • Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858

    Article  PubMed Central  PubMed  Google Scholar 

  • Wakita H, Tomimoto H, Akiguchi I, Lin J-X, Miyamoto K, Oka N (1999) A cyclooxygenase-2 inhibitor attenuates white matter damage in chronic cerebral ischemia. NeuroReport 10(7):1461–1465

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki K, Adachi K, Kataoka S, Watanabe A, Tabira T, Takahashi K, Wakita H (2008) Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice. Exp Neurol 210(2):585–591

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the scientific editors at Impactys (www.impactys.com) for editing and proofreading this manuscript. This work was supported by research grants from the National Natural Science Foundation of China (Grant No. 81171113), the Postdoctoral Fund (Grant No. XM201101003), the National Natural Science Foundation of China (Grant No. 31300881), and the National Basic Research Program of China (973 Program, Grant No. 2009CB918300.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Xie or Wen Huang.

Additional information

Pengfei Cheng, Yifei Ren, Shunjie Bai, Yu Wu, and Yi Xu have contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, P., Ren, Y., Bai, S. et al. Chronic Cerebral Ischemia Induces Downregulation of A1 Adenosine Receptors During White Matter Damage in Adult Mice. Cell Mol Neurobiol 35, 1149–1156 (2015). https://doi.org/10.1007/s10571-015-0208-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0208-4

Keywords

Navigation